Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o48. doi: 10.1107/S2056989014026978

Crystal structure of 2-{[(2-chloro­phen­yl)imino]­meth­yl}phenol

Matheswaran Saranya a, Annamalai Subashini a,*, Chidambaram Arunagiri b, Packianathan Thomas Muthiah c
PMCID: PMC4331896  PMID: 25705501

Abstract

In the title compound, C13H10ClNO, the dihedral angle between the planes of the aromatic rings is 51.42 (9)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. The Cl atom and the N atom are syn. No directional inter­actions beyond van der Waals contacts are observed in the crystal.

Keywords: crystal structure, 2-{[(2-chloro­phen­yl)imino]­meth­yl}phenol, Schiff base, van der Waals contacts

Related literature  

For related structures recently reported by us and background to Schiff bases, see: Arunagiri et al. (2013a ,b ). For a related structure, see: Chumakov et al. (2005). graphic file with name e-71-00o48-scheme1.jpg

Experimental  

Crystal data  

  • C13H10ClNO

  • M r = 231.67

  • Orthorhombic, Inline graphic

  • a = 6.8591 (2) Å

  • b = 12.1829 (4) Å

  • c = 13.5405 (5) Å

  • V = 1131.50 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • 6509 measured reflections

  • 2744 independent reflections

  • 2315 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.097

  • S = 1.06

  • 2744 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983)

  • Absolute structure parameter: 0.01 (7)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014026978/hb7335sup1.cif

e-71-00o48-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026978/hb7335Isup2.hkl

e-71-00o48-Isup2.hkl (132KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026978/hb7335Isup3.cml

. DOI: 10.1107/S2056989014026978/hb7335fig1.tif

Mol­ecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Dashed line indicates intra­molecular hydrogen bond.

. DOI: 10.1107/S2056989014026978/hb7335fig2.tif

Hydrogen bonding inter­action of title compound.

CCDC reference: 1038374

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1N1 0.82 1.88 2.611(2) 147

Acknowledgments

MS thanks Collegiate Education Chennai, Tamil Nadu, for financial support (College Research Student Fellowship; reference No. 28696/K2/12).

supplementary crystallographic information

S1. Comment

As part of our ongoing studies of Schiff bases (Arunagiri et al., 2013a,b), we now describe the synthesis and structure of the title compound.

An ORTEP view of the asymmetric unit is shown in Figure 1. The asymmetric unit contains a molecule of Schiff base. The compound crystallizes in the orthorhombic space group P212121. The dihedral angle between the salicylidene moiety and amino phenyl plane is 51.42 (9)°. The two torsional angles τ1 (N—C—C—C) and τ2 (C—N—C—C) defining the confirmation of the molecule. In the present crystal structure, the torsion angles are 3.2 (3)° (N1—C7—C8—C9), -179.23 (2)° (N1—C7—C8—C13), 47.5 (2)° (C7—N1—C1—C6), -174.48 (2)° (C8—C7—N1—C1) and -135.60 (2)° (N1—C7—C1—C2). The N1—C7 distance of 1.275 (2) Å is normal double bond values and agree well with those observed in other azomethines. The C1—N1—C7 bond angle of 118.70 (2)° in the Schiff base ligand has a normal value. The C3—C2—C1 angle is 121.15 (2)° is larger than typical hexagonal of 120°. The C8—C9—C10 angle is 119.53 (2)° is smaller than typical hexagonal of 120°. This is due to effect of substitution on Cl & OH of the two aromatic rings. The two benzene rings (amino phenyl and salicylaldehyde) and the azomethine group are practically coplanar, as a result of intramolecular O—H···N (O1—H1···N1 with bond length of 2.611 (2) Å and bond angle of 147°) hydrogen bond involving the hydroxy O-atom and azomethine N-atom with graph-set notation S(6), as shown in Figure 2. Similar intramolecular hydrogen bonds are reported for the crystal structures of 2-(naphthalene-2-yliminomethyl) phenol and N-acetyl-4-[(2-hydroxybenzylidene)-amino]benzenesulfonamide monohydrate (Arunagiri et al., 2013 (a); Chumakov et al., 2005).

S2. Experimental

An ethanol solution (25 ml) of chlorophenyl amine (0.25 mole) was mixed with hydroxy benzaldehyde (0.25 mole) and the contents were refluxed for 3 h and kept aside for crystallization. After a few days a pale yellow colour precipitate was formed. Recrystallization was from CHCl3/ethanol solution to form yellow needles. FT—IR (KBr pellet) in cm-1: 3437(O—H), 1614 cm-1(C=N stretching); 1H—NMR (400 MHz, DMSO– d6) in δ (p.p.m.) 13.17 (s,1H, aromatic O—H), 8.63 (s, 1H,C=N), 6.93 - 7.50 (m,8H, CH aromatic),13C—NMR (400 MHz, DMSO-d6) in δ (p.p.m.): 163.3 (C=N), 161.4 (phenolic OH), Electronic spectrum, λmax: 275 and 340 nm (due to intraligand π–π* and n–π* transitions); fluorescence spectra, 432 nm (attributed to the n–π* transition).

S3. Refinement

All H atoms were positioned geometrically and treated as riding. The C—H and O—H bond lengths are 0.93 Å and 0.82 Å respectively.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Dashed line indicates intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

Hydrogen bonding interaction of title compound.

Crystal data

C13H10ClNO F(000) = 480
Mr = 231.67 Dx = 1.360 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 45 reflections
a = 6.8591 (2) Å θ = 3.0–28.3°
b = 12.1829 (4) Å µ = 0.31 mm1
c = 13.5405 (5) Å T = 293 K
V = 1131.50 (6) Å3 Cut needle, yellow
Z = 4 0.30 × 0.25 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2315 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.017
Graphite monochromator θmax = 28.3°, θmin = 3.0°
ω scans h = −9→7
6509 measured reflections k = −13→16
2744 independent reflections l = −18→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.0823P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2744 reflections Δρmax = 0.17 e Å3
146 parameters Δρmin = −0.17 e Å3
0 restraints Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.01 (7)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.22873 (7) 0.87326 (5) 0.81891 (4) 0.0781 (2)
O1 0.41345 (19) 0.60666 (15) 0.63294 (11) 0.0742 (5)
N1 0.0830 (2) 0.68972 (13) 0.69278 (10) 0.0531 (4)
C1 −0.0473 (2) 0.72426 (14) 0.76845 (12) 0.0486 (5)
C2 0.0066 (2) 0.80739 (14) 0.83346 (13) 0.0513 (5)
C3 −0.1161 (3) 0.84060 (16) 0.90860 (14) 0.0606 (6)
C4 −0.2937 (3) 0.78949 (18) 0.92067 (14) 0.0672 (7)
C5 −0.3476 (3) 0.70587 (18) 0.85879 (16) 0.0668 (7)
C6 −0.2258 (3) 0.67361 (15) 0.78292 (13) 0.0563 (5)
C7 0.0161 (2) 0.67467 (14) 0.60596 (13) 0.0506 (5)
C8 0.1350 (2) 0.63031 (15) 0.52664 (12) 0.0501 (5)
C9 0.3282 (3) 0.59651 (15) 0.54312 (14) 0.0556 (5)
C10 0.4336 (3) 0.54992 (17) 0.46648 (17) 0.0676 (7)
C11 0.3501 (3) 0.53771 (17) 0.37489 (16) 0.0716 (8)
C12 0.1616 (3) 0.57133 (18) 0.35676 (15) 0.0701 (7)
C13 0.0551 (3) 0.61655 (16) 0.43201 (13) 0.0597 (6)
H1 0.33750 0.63660 0.67120 0.1110*
H3 −0.07910 0.89710 0.95080 0.0730*
H4 −0.37710 0.81180 0.97090 0.0810*
H5 −0.46660 0.67070 0.86790 0.0800*
H6 −0.26410 0.61710 0.74100 0.0680*
H7 −0.11310 0.69270 0.59300 0.0610*
H10 0.56110 0.52680 0.47710 0.0810*
H11 0.42230 0.50620 0.32410 0.0860*
H12 0.10740 0.56340 0.29420 0.0840*
H13 −0.07260 0.63860 0.42020 0.0720*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0627 (3) 0.0739 (3) 0.0977 (4) −0.0117 (2) −0.0077 (2) −0.0088 (3)
O1 0.0569 (7) 0.0894 (11) 0.0762 (9) 0.0072 (8) −0.0098 (6) −0.0086 (8)
N1 0.0541 (7) 0.0507 (8) 0.0545 (7) 0.0050 (6) −0.0011 (6) −0.0023 (6)
C1 0.0520 (9) 0.0442 (9) 0.0496 (8) 0.0093 (7) −0.0039 (7) 0.0014 (7)
C2 0.0536 (8) 0.0423 (8) 0.0579 (9) 0.0038 (7) −0.0103 (7) 0.0030 (7)
C3 0.0738 (12) 0.0493 (10) 0.0588 (10) 0.0110 (8) −0.0099 (8) −0.0079 (8)
C4 0.0715 (12) 0.0656 (12) 0.0644 (11) 0.0088 (10) 0.0122 (9) −0.0050 (10)
C5 0.0633 (10) 0.0610 (12) 0.0761 (12) −0.0017 (9) 0.0086 (9) −0.0019 (10)
C6 0.0597 (9) 0.0477 (9) 0.0614 (9) 0.0011 (8) −0.0033 (8) −0.0063 (8)
C7 0.0516 (8) 0.0436 (8) 0.0566 (9) 0.0050 (7) −0.0025 (7) 0.0009 (7)
C8 0.0578 (8) 0.0392 (8) 0.0533 (9) −0.0004 (7) 0.0033 (7) 0.0024 (7)
C9 0.0547 (8) 0.0453 (9) 0.0667 (10) −0.0036 (7) 0.0040 (8) 0.0034 (8)
C10 0.0609 (10) 0.0551 (11) 0.0869 (14) 0.0012 (9) 0.0190 (10) 0.0028 (10)
C11 0.0956 (15) 0.0490 (11) 0.0703 (13) 0.0000 (11) 0.0317 (11) −0.0017 (9)
C12 0.0957 (14) 0.0612 (12) 0.0533 (10) −0.0001 (12) 0.0053 (10) −0.0001 (9)
C13 0.0702 (10) 0.0531 (10) 0.0559 (9) 0.0019 (9) 0.0001 (8) 0.0025 (8)

Geometric parameters (Å, º)

Cl1—C2 1.7333 (15) C9—C10 1.386 (3)
O1—C9 1.355 (2) C10—C11 1.374 (3)
O1—H1 0.8200 C11—C12 1.378 (3)
N1—C7 1.275 (2) C12—C13 1.369 (3)
N1—C1 1.423 (2) C3—H3 0.9300
C1—C6 1.385 (2) C4—H4 0.9300
C1—C2 1.392 (2) C5—H5 0.9300
C2—C3 1.381 (3) C6—H6 0.9300
C3—C4 1.378 (3) C7—H7 0.9300
C4—C5 1.370 (3) C10—H10 0.9300
C5—C6 1.381 (3) C11—H11 0.9300
C7—C8 1.453 (2) C12—H12 0.9300
C8—C13 1.404 (2) C13—H13 0.9300
C8—C9 1.406 (2)
C9—O1—H1 109.00 C11—C12—C13 119.17 (19)
C1—N1—C7 118.70 (13) C8—C13—C12 121.26 (18)
N1—C1—C6 121.68 (15) C2—C3—H3 120.00
C2—C1—C6 118.00 (15) C4—C3—H3 120.00
N1—C1—C2 120.24 (13) C3—C4—H4 120.00
Cl1—C2—C3 118.93 (14) C5—C4—H4 120.00
C1—C2—C3 121.15 (15) C4—C5—H5 120.00
Cl1—C2—C1 119.90 (12) C6—C5—H5 120.00
C2—C3—C4 119.59 (17) C1—C6—H6 120.00
C3—C4—C5 120.14 (19) C5—C6—H6 120.00
C4—C5—C6 120.22 (19) N1—C7—H7 119.00
C1—C6—C5 120.87 (17) C8—C7—H7 119.00
N1—C7—C8 122.21 (13) C9—C10—H10 120.00
C7—C8—C13 120.01 (14) C11—C10—H10 120.00
C9—C8—C13 118.56 (16) C10—C11—H11 119.00
C7—C8—C9 121.39 (15) C12—C11—H11 119.00
O1—C9—C10 118.96 (18) C11—C12—H12 120.00
C8—C9—C10 119.53 (18) C13—C12—H12 120.00
O1—C9—C8 121.51 (17) C8—C13—H13 119.00
C9—C10—C11 120.17 (19) C12—C13—H13 119.00
C10—C11—C12 121.3 (2)
C7—N1—C1—C2 −135.60 (17) N1—C7—C8—C9 3.2 (3)
C7—N1—C1—C6 47.5 (2) N1—C7—C8—C13 −179.23 (17)
C1—N1—C7—C8 −174.48 (16) C7—C8—C9—O1 −1.9 (3)
N1—C1—C2—Cl1 2.9 (2) C7—C8—C9—C10 177.01 (17)
C6—C1—C2—Cl1 179.83 (13) C13—C8—C9—O1 −179.45 (18)
C6—C1—C2—C3 −1.7 (3) C13—C8—C9—C10 −0.6 (3)
N1—C1—C2—C3 −178.70 (16) C7—C8—C13—C12 −177.66 (18)
C2—C1—C6—C5 0.9 (3) C9—C8—C13—C12 0.0 (3)
N1—C1—C6—C5 177.85 (17) O1—C9—C10—C11 179.40 (19)
Cl1—C2—C3—C4 179.58 (15) C8—C9—C10—C11 0.5 (3)
C1—C2—C3—C4 1.1 (3) C9—C10—C11—C12 0.2 (3)
C2—C3—C4—C5 0.3 (3) C10—C11—C12—C13 −0.8 (3)
C3—C4—C5—C6 −1.1 (3) C11—C12—C13—C8 0.7 (3)
C4—C5—C6—C1 0.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.88 2.611 (2) 147

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7335).

References

  1. Arunagiri, C., Subashini, A., Saranya, M. & Thomas Muthiah, P. (2013a). Elixir Org. Chem. 58, 14767–14770.
  2. Arunagiri, C., Subashini, A., Saranya, M. & Thomas Muthiah, P. (2013b). Indian J. Appl. Res. 3, 78–81.
  3. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chumakov, Y. M., Tsapkov, V. I., Bocelli, G. & Antosyak, B. Ya. (2005). Acta Cryst. C61, o460–o463. [DOI] [PubMed]
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014026978/hb7335sup1.cif

e-71-00o48-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026978/hb7335Isup2.hkl

e-71-00o48-Isup2.hkl (132KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026978/hb7335Isup3.cml

. DOI: 10.1107/S2056989014026978/hb7335fig1.tif

Mol­ecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Dashed line indicates intra­molecular hydrogen bond.

. DOI: 10.1107/S2056989014026978/hb7335fig2.tif

Hydrogen bonding inter­action of title compound.

CCDC reference: 1038374

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES