Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o16. doi: 10.1107/S2056989014025584

Crystal structure of ethyl 2-[2-((1E)-{(1E)-2-[2-(2-eth­oxy-2-oxoeth­oxy)benzyl­idene]hydrazin-1-yl­idene}meth­yl)phen­oxy]acetate

Joel T Mague a, Shaaban K Mohamed b,c, Mehmet Akkurt d, Eman A Ahmed e,*, Omran A Omran e
PMCID: PMC4331898  PMID: 25705481

Abstract

The complete mol­ecule of the title compound, C22H24N2O6, is generated by crystallographic inversion symmetry and is approximately planar (r.m.s. deviation of the non-H atoms = 0.134 Å). The packing consists of inter-digitated sheets inclined at 25.9 (4)° to one another and linked by short C—H⋯O hydrogen bonds.

Keywords: crystal structure, azomethenes, bis-phen­oxy carboxyl­ate

Related literature  

For background to the properties and applications of imines see: Sun et al. (2001); Boghaei & Mohebi (2002); Liu et al. (2006); Britovsek et al. (2001); Budakoti et al. (2006).graphic file with name e-71-00o16-scheme1.jpg

Experimental  

Crystal data  

  • C22H24N2O6

  • M r = 412.43

  • Monoclinic, Inline graphic

  • a = 18.2073 (5) Å

  • b = 11.7758 (3) Å

  • c = 9.9950 (3) Å

  • β = 93.226 (1)°

  • V = 2139.59 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 150 K

  • 0.16 × 0.15 × 0.07 mm

Data collection  

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.88, T max = 0.94

  • 12339 measured reflections

  • 2124 independent reflections

  • 1801 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.094

  • S = 1.06

  • 2124 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Bruker, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2014).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014025584/hb7321sup1.cif

e-71-00o16-sup1.cif (379.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025584/hb7321Isup2.hkl

e-71-00o16-Isup2.hkl (117KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014025584/hb7321Isup3.cml

. DOI: 10.1107/S2056989014025584/hb7321fig1.tif

The title compound showing 50% probability ellipsoids. Primed atoms are related to their unprimed counterparts by the crystallographic center.

a . DOI: 10.1107/S2056989014025584/hb7321fig2.tif

Packing viewed down the a axis with C—H⋯O inter­actions shown by dotted lines.

. DOI: 10.1107/S2056989014025584/hb7321fig3.tif

Elevation view of the inter­pentrating layer packing.

CCDC reference: 1035485

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C6H6O2i 0.95 2.34 3.2802(14) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

supplementary crystallographic information

S1. Comment

Imines are used as catalysts, in medicine as antibiotics and anti-inflammatory agents and in industry as anticorrosion agents (Sun et al., 2001; Boghaei & Mohebi, 2002; Liu et al., 2006; Britovsek et al., 2001; Budakoti et al., 2006). Based on these finding we report here the synthesis and crystal structure of the title compound.

The title molecule has crystallographically imposed centrosymmetry with an "extended" conformation in which the central portion is almost planar. Intermolecular C6—H6···O2 hydrogen bonds (Table 1) assemble the molecules into interpenetrating sheets which are inclined to (100) by 24.0 and 24.3° and to one another by 25.9° (Figs. 2 and 3).

S2. Experimental

A mixture of 1 mmol (326 mg) of ethyl (2-{(Z)-[(2E)-(2-hydroxybenzylidene)hydrazono]methyl}phenoxy)acetate and 1 mmol (167 mg) of ethyl bromoacetate in 30 ml of ethanol was heated under reflux for 24 h. The resulting solid product was filtered off, dried and recrystallized from dichlomethane solution to furnish pale yellow blocks in 90% yield (m.p. 383 K).

S3. Refinement

H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Figures

Fig. 1.

Fig. 1.

The title compound showing 50% probability ellipsoids. Primed atoms are related to their unprimed counterparts by the crystallographic center.

Fig. 2.

Fig. 2.

Packing viewed down the a axis with C—H···O interactions shown by dotted lines.

Fig. 3.

Fig. 3.

Elevation view of the interpentrating layer packing.

Crystal data

C22H24N2O6 F(000) = 872
Mr = 412.43 Dx = 1.280 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54178 Å
a = 18.2073 (5) Å Cell parameters from 7734 reflections
b = 11.7758 (3) Å θ = 4.5–72.3°
c = 9.9950 (3) Å µ = 0.78 mm1
β = 93.226 (1)° T = 150 K
V = 2139.59 (10) Å3 Block, pale yellow
Z = 4 0.16 × 0.15 × 0.07 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 2124 independent reflections
Radiation source: INCOATEC IµS micro-focus source 1801 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.032
Detector resolution: 10.4167 pixels mm-1 θmax = 72.3°, θmin = 4.5°
ω scans h = −22→22
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −13→14
Tmin = 0.88, Tmax = 0.94 l = −12→12
12339 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.7328P] where P = (Fo2 + 2Fc2)/3
2124 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.65269 (5) 0.39734 (7) 0.64113 (8) 0.0303 (2)
O2 0.60379 (5) 0.59761 (8) 0.72472 (8) 0.0394 (2)
O3 0.57361 (5) 0.65089 (7) 0.51290 (8) 0.0310 (2)
N1 0.74455 (5) 0.21539 (8) 0.94262 (9) 0.0274 (2)
C1 0.66504 (6) 0.28591 (9) 0.60919 (11) 0.0247 (2)
C2 0.69652 (6) 0.21893 (9) 0.71363 (10) 0.0240 (2)
C3 0.70953 (6) 0.10397 (10) 0.68869 (12) 0.0283 (3)
H3 0.7311 0.0577 0.7581 0.034*
C4 0.69152 (7) 0.05673 (10) 0.56450 (12) 0.0314 (3)
H4 0.6996 −0.0218 0.5492 0.038*
C5 0.66146 (7) 0.12522 (11) 0.46220 (12) 0.0308 (3)
H5 0.6497 0.0930 0.3765 0.037*
C6 0.64838 (6) 0.23969 (10) 0.48302 (11) 0.0277 (3)
H6 0.6283 0.2859 0.4121 0.033*
C7 0.71462 (6) 0.27139 (9) 0.84382 (11) 0.0253 (2)
H7 0.7039 0.3496 0.8557 0.030*
C8 0.61552 (7) 0.46587 (10) 0.54257 (11) 0.0284 (3)
H8A 0.5696 0.4282 0.5085 0.034*
H8B 0.6470 0.4784 0.4664 0.034*
C9 0.59814 (6) 0.57753 (10) 0.60731 (11) 0.0274 (3)
C10 0.55682 (7) 0.76451 (11) 0.55916 (13) 0.0378 (3)
H10A 0.6004 0.7979 0.6081 0.045*
H10B 0.5159 0.7618 0.6203 0.045*
C11 0.53530 (8) 0.83464 (12) 0.43762 (16) 0.0463 (4)
H11A 0.5767 0.8387 0.3793 0.069*
H11B 0.5221 0.9114 0.4656 0.069*
H11C 0.4930 0.7995 0.3887 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0445 (5) 0.0230 (4) 0.0226 (4) 0.0049 (3) −0.0062 (3) 0.0004 (3)
O2 0.0579 (6) 0.0364 (5) 0.0234 (4) 0.0062 (4) −0.0031 (4) −0.0042 (4)
O3 0.0402 (5) 0.0251 (4) 0.0273 (4) 0.0064 (3) −0.0017 (3) 0.0001 (3)
N1 0.0353 (5) 0.0252 (5) 0.0214 (5) −0.0008 (4) −0.0014 (4) 0.0006 (4)
C1 0.0270 (5) 0.0233 (6) 0.0241 (5) −0.0009 (4) 0.0031 (4) 0.0011 (4)
C2 0.0257 (5) 0.0250 (6) 0.0215 (5) −0.0021 (4) 0.0025 (4) 0.0017 (4)
C3 0.0310 (6) 0.0254 (6) 0.0285 (6) 0.0003 (4) 0.0015 (4) 0.0041 (4)
C4 0.0381 (7) 0.0235 (6) 0.0327 (6) 0.0008 (5) 0.0018 (5) −0.0033 (5)
C5 0.0359 (6) 0.0323 (6) 0.0242 (6) 0.0000 (5) 0.0010 (5) −0.0049 (5)
C6 0.0320 (6) 0.0294 (6) 0.0217 (5) 0.0002 (4) 0.0000 (4) 0.0015 (4)
C7 0.0295 (6) 0.0229 (5) 0.0234 (5) −0.0010 (4) 0.0020 (4) 0.0020 (4)
C8 0.0366 (6) 0.0258 (6) 0.0221 (5) 0.0030 (4) −0.0036 (4) 0.0017 (4)
C9 0.0293 (6) 0.0280 (6) 0.0245 (5) 0.0003 (4) −0.0018 (4) −0.0001 (4)
C10 0.0436 (7) 0.0268 (6) 0.0432 (7) 0.0086 (5) 0.0032 (6) −0.0040 (5)
C11 0.0472 (8) 0.0350 (7) 0.0578 (9) 0.0141 (6) 0.0135 (7) 0.0127 (7)

Geometric parameters (Å, º)

O1—C1 1.3720 (14) C4—H4 0.9500
O1—C8 1.4159 (13) C5—C6 1.3867 (17)
O2—C9 1.1958 (14) C5—H5 0.9500
O3—C9 1.3374 (14) C6—H6 0.9500
O3—C10 1.4537 (14) C7—H7 0.9500
N1—C7 1.2831 (14) C8—C9 1.5070 (15)
N1—N1i 1.4121 (18) C8—H8A 0.9900
C1—C6 1.3912 (15) C8—H8B 0.9900
C1—C2 1.4046 (15) C10—C11 1.5025 (19)
C2—C3 1.3991 (16) C10—H10A 0.9900
C2—C7 1.4613 (15) C10—H10B 0.9900
C3—C4 1.3827 (16) C11—H11A 0.9800
C3—H3 0.9500 C11—H11B 0.9800
C4—C5 1.3901 (17) C11—H11C 0.9800
C1—O1—C8 117.47 (9) C2—C7—H7 118.9
C9—O3—C10 115.97 (9) O1—C8—C9 107.59 (9)
C7—N1—N1i 111.26 (12) O1—C8—H8A 110.2
O1—C1—C6 123.70 (10) C9—C8—H8A 110.2
O1—C1—C2 115.44 (9) O1—C8—H8B 110.2
C6—C1—C2 120.86 (10) C9—C8—H8B 110.2
C3—C2—C1 118.49 (10) H8A—C8—H8B 108.5
C3—C2—C7 122.39 (10) O2—C9—O3 124.86 (11)
C1—C2—C7 119.11 (10) O2—C9—C8 125.82 (11)
C4—C3—C2 121.01 (11) O3—C9—C8 109.30 (9)
C4—C3—H3 119.5 O3—C10—C11 107.37 (11)
C2—C3—H3 119.5 O3—C10—H10A 110.2
C3—C4—C5 119.38 (11) C11—C10—H10A 110.2
C3—C4—H4 120.3 O3—C10—H10B 110.2
C5—C4—H4 120.3 C11—C10—H10B 110.2
C6—C5—C4 121.16 (11) H10A—C10—H10B 108.5
C6—C5—H5 119.4 C10—C11—H11A 109.5
C4—C5—H5 119.4 C10—C11—H11B 109.5
C5—C6—C1 119.07 (11) H11A—C11—H11B 109.5
C5—C6—H6 120.5 C10—C11—H11C 109.5
C1—C6—H6 120.5 H11A—C11—H11C 109.5
N1—C7—C2 122.19 (10) H11B—C11—H11C 109.5
N1—C7—H7 118.9
C8—O1—C1—C6 5.25 (16) O1—C1—C6—C5 −178.46 (10)
C8—O1—C1—C2 −174.91 (9) C2—C1—C6—C5 1.71 (17)
O1—C1—C2—C3 178.99 (9) N1i—N1—C7—C2 −179.14 (10)
C6—C1—C2—C3 −1.17 (16) C3—C2—C7—N1 1.02 (17)
O1—C1—C2—C7 −1.15 (15) C1—C2—C7—N1 −178.84 (10)
C6—C1—C2—C7 178.69 (10) C1—O1—C8—C9 171.36 (9)
C1—C2—C3—C4 −0.39 (17) C10—O3—C9—O2 3.46 (17)
C7—C2—C3—C4 179.75 (10) C10—O3—C9—C8 −177.91 (10)
C2—C3—C4—C5 1.38 (18) O1—C8—C9—O2 −11.11 (17)
C3—C4—C5—C6 −0.83 (18) O1—C8—C9—O3 170.27 (9)
C4—C5—C6—C1 −0.70 (18) C9—O3—C10—C11 176.28 (10)

Symmetry code: (i) −x+3/2, −y+1/2, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O2ii 0.95 2.34 3.2802 (14) 168

Symmetry code: (ii) x, −y+1, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7321).

References

  1. Boghaei, D. M. & Mohebi, S. (2002). Tetrahedron, 58, 5357–5366.
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Britovsek, G. J. P., Gibson, V. V., Mastroianni, S., Oakes, D. C. H., Red, S. C., Solan, G. A., White, A. J. P. & Williams, D. J. (2001). Eur. J. Inorg. Chem. 2, 431–437.
  4. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  5. Budakoti, A., Abid, M. & Azam, A. (2006). Eur. J. Med. Chem. 41, 63–70. [DOI] [PubMed]
  6. Liu, J., Wu, B., Zhang, B. & Liu, Y. (2006). Turk. J. Chem. 30, 41–48.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sun, B., Chen, J., Hu, J. Y. & Lix, J. (2001). Chin. Chem. Lett. 12, 1043–1047.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014025584/hb7321sup1.cif

e-71-00o16-sup1.cif (379.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025584/hb7321Isup2.hkl

e-71-00o16-Isup2.hkl (117KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014025584/hb7321Isup3.cml

. DOI: 10.1107/S2056989014025584/hb7321fig1.tif

The title compound showing 50% probability ellipsoids. Primed atoms are related to their unprimed counterparts by the crystallographic center.

a . DOI: 10.1107/S2056989014025584/hb7321fig2.tif

Packing viewed down the a axis with C—H⋯O inter­actions shown by dotted lines.

. DOI: 10.1107/S2056989014025584/hb7321fig3.tif

Elevation view of the inter­pentrating layer packing.

CCDC reference: 1035485

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES