Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o58–o59. doi: 10.1107/S2056989014027455

Crystal structure of 5-[bis­(methyl­sulfon­yl)meth­yl]-1,3-dimethyl-5-(methyl­sulfon­yl)pyrimidine-2,4,6(1H,3H,5H)-trione

Eyad Mallah a,*, Ahmed Al-Sheikh a, Kamal Sweidan b, Wael Abu Dayyih a, Manfred Steimann c
PMCID: PMC4331903  PMID: 25705508

Abstract

In the title compound, C10H16N2O9S3, the pyrimidine ring of the 1,3-dimethyl barbituric acid moiety has an envelope conformation with the C atom carrying the methyl­sulfonyl and bis­(methyl­sulfon­yl)methyl substituents as the flap. The dihedral angle between mean plane of the pyrimidine ring and the S/C/S plane is 72.4 (3)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming a three-dimensional structure.

Keywords: crystal structure, barbituric acid, pyrimidines, methyl­sulfon­yl, trione, hydrogen bonding

Related literature  

For examples of the biological activity of pyrimidines, see: Habibi & Tarameshloo (2011); Holtkamp & Meierkord (2007). For aspects of nucleic acid binding, see: Demeunynck et al. (2004). For drug applications of C5-substituted barbituric and 2-thio­barbituric acids, see: Getova & Georgiev (1989); Kratt et al. (1990); Kotha et al. (2005). For the structures of similar compounds, see: Huang & Chen (1986); Ye et al. (1989); Al-Sheikh et al. (2009); Awad et al. (2014); Glidewell et al. (1995). For the synthesis of the starting material, see: Sweidan et al. (2009).graphic file with name e-71-00o58-scheme1.jpg

Experimental  

Crystal data  

  • C10H16N2O9S3

  • M r = 404.43

  • Triclinic, Inline graphic

  • a = 7.9415 (16) Å

  • b = 8.5796 (17) Å

  • c = 12.756 (3) Å

  • α = 77.08 (3)°

  • β = 79.50 (3)°

  • γ = 67.83 (3)°

  • V = 779.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 173 K

  • 0.15 × 0.10 × 0.05 mm

Data collection  

  • Stoe IPDS diffractometer

  • 11105 measured reflections

  • 3175 independent reflections

  • 2582 reflections with I > 2σ(I)

  • R int = 0.069

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.105

  • S = 1.24

  • 3175 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008; molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014027455/su5040sup1.cif

e-71-00o58-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027455/su5040Isup2.hkl

e-71-00o58-Isup2.hkl (155.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027455/su5040Isup3.cml

. DOI: 10.1107/S2056989014027455/su5040fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

. DOI: 10.1107/S2056989014027455/su5040fig2.tif

A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

CCDC reference: 1039815

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C5H5BO8i 0.98 2.51 3.240(6) 131
C6H6AO9ii 0.98 2.59 3.380(5) 138
C8H8CO8iii 0.98 2.51 3.263(5) 133
C10H10AO5iv 0.98 2.50 3.219(5) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We are indebted to the University of Petra, the University of Jordan and the University of Tübingen for their endless help and support.

supplementary crystallographic information

S1. Comment

Compounds containing pyrimidine play a vital role in biological activity (Habibi & Tarameshloo, 2011; Holtkamp & Meierkord, 2007). This activity differs from molecule to molecule depending on the tautomery and the nature of the substituents (Demeunynck et al., 2004). In view of the pharmaceutical significance of pyrimidines we became interested in obtaining new barbituric acid derivatives. C5-substituted barbituric and 2-thiobarbituric acids have been used for sedative, hypnotics and anticonvulsant drug applications (Getova & Georgiev 1989; Kratt et al., 1990; Kotha et al., 2005). 1,3-dimethyl barbituric acid has a tendency to accept negative charges by delocalization of π electrons and can exhibit zwitterionic nature. The title compound, which was synthesized via the reaction of 1,3-dimethyl-5-bis-(thiomethyl)methylenebarbituric acid and m-chloroperbenzoic acid, may find applications in bio-organic chemistry.

Several noteworthy features are evident in the crystal structure of the title compound, Fig. 1. The three central sulfonyl groups utilize one methyl group which have almost identical S—C bond lengths [S1—C9 1.752 (4) Å, S2—C8 1.744 (4) Å, S3—C10 1.762 (4) Å] and they are slightly shorter than those reported for (PhSO2)2CH2 (1.786 Å; Glidewell et al. 1995) and for bis(methylsulfonyl)methane (1.781 Å; Awad et al. 2014). Interestingly, significant elongation of the (C4—C7) bond length [1.547 (5) Å] may be attributed to interactions between the sulfonyl groups located at position C7.

As a result of crystal packing the geometry of one of the sulfonyl groups is as expected; having one sulfur-oxygen bond slightly shorter than the other [S2—O1 = 1.415 (3) Å, and S1—O3 = 1.434 (3) Å]. The carbonyl groups that are located on the barbituric acid ring have approximately the same bond lengths, varying from 1.200 (4) to 1.211 (4) Å. The pyrimidine ring in barbituric acid moiety is significantly distorted from planarity and has an envelope conformation with atom C as the flap.

In the crystal, molecules are linked via C—H···O hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 2)

S2. Experimental

The title compound was synthesized by adding m-chloroperbenzoic acid (4.5 g, 20 mmol) to a solution containing 1,3-dimethyl-5-bis-(thiomethyl)methylenebarbituric acid (1.3 g, 5 mmol; Sweidan et al., 2009), in dichloromethane (20 ml) at 213 K. After stirring overnight, the solvent was removed in vacuo. Diethylether (20 ml) was added and the precipitated solid was collected and recrystallized from CH2Cl2/Et2O to give colourless crystals (yield: 1.0 g, 51%).

S3. Refinement

The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.98–1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

Fig. 2.

Fig. 2.

A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

Crystal data

C10H16N2O9S3 Z = 2
Mr = 404.43 F(000) = 420
Triclinic, P1 Dx = 1.722 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9415 (16) Å Cell parameters from 30 reflections
b = 8.5796 (17) Å θ = 10.3–20.1°
c = 12.756 (3) Å µ = 0.53 mm1
α = 77.08 (3)° T = 173 K
β = 79.50 (3)° Plate, colourless
γ = 67.83 (3)° 0.15 × 0.10 × 0.05 mm
V = 779.9 (3) Å3

Data collection

Stoe IPDS diffractometer 2582 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.069
Graphite monochromator θmax = 26.4°, θmin = 3.1°
phi scans h = −9→9
11105 measured reflections k = −10→10
3175 independent reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.P)2 + 1.8882P] where P = (Fo2 + 2Fc2)/3
S = 1.24 (Δ/σ)max < 0.001
3175 reflections Δρmax = 0.39 e Å3
223 parameters Δρmin = −0.44 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0053 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.26932 (13) 0.98015 (13) 0.40183 (7) 0.0206 (2)
S2 0.04979 (12) 1.12489 (12) 0.20775 (7) 0.0203 (2)
S3 0.36913 (12) 0.56897 (12) 0.32733 (8) 0.0203 (2)
N1 0.0632 (4) 0.6845 (4) 0.1414 (3) 0.0199 (7)
N2 0.3363 (4) 0.7382 (4) 0.0629 (2) 0.0194 (7)
O1 0.1593 (4) 1.2283 (4) 0.1838 (3) 0.0357 (7)
O2 0.1389 (4) 1.1372 (4) 0.4315 (2) 0.0322 (7)
O3 0.3197 (4) 0.8360 (4) 0.4871 (2) 0.0312 (7)
O4 0.0233 (4) 1.0569 (4) 0.1216 (2) 0.0308 (7)
O5 0.5284 (4) 0.5940 (4) 0.3464 (2) 0.0289 (7)
O6 0.3920 (4) 0.4469 (4) 0.2607 (2) 0.0287 (6)
O7 −0.0780 (4) 0.7631 (4) 0.3019 (2) 0.0267 (6)
O8 0.2123 (4) 0.6024 (4) −0.0170 (2) 0.0255 (6)
O9 0.4500 (3) 0.8776 (3) 0.1470 (2) 0.0222 (6)
C1 0.0528 (5) 0.7430 (5) 0.2337 (3) 0.0186 (7)
C2 0.2063 (5) 0.6684 (5) 0.0579 (3) 0.0177 (7)
C3 0.3452 (5) 0.8054 (5) 0.1483 (3) 0.0164 (7)
C4 0.2215 (5) 0.7758 (5) 0.2529 (3) 0.0171 (7)
C5 −0.0927 (5) 0.6445 (6) 0.1232 (3) 0.0275 (9)
H5A −0.1683 0.6306 0.1920 0.041*
H5B −0.0473 0.5383 0.0935 0.041*
H5C −0.1662 0.7378 0.0721 0.041*
C6 0.4587 (5) 0.7625 (5) −0.0362 (3) 0.0257 (9)
H6A 0.4152 0.8825 −0.0712 0.039*
H6B 0.4591 0.6901 −0.0859 0.039*
H6C 0.5830 0.7309 −0.0175 0.039*
C7 0.1493 (5) 0.9322 (5) 0.3113 (3) 0.0169 (7)
H7 0.0390 0.9184 0.3587 0.020*
C8 −0.1646 (5) 1.2318 (5) 0.2710 (3) 0.0272 (9)
H8A −0.1492 1.2715 0.3338 0.041*
H8B −0.2333 1.1540 0.2949 0.041*
H8C −0.2316 1.3301 0.2199 0.041*
C9 0.4678 (5) 1.0156 (5) 0.3342 (3) 0.0241 (8)
H9A 0.5235 1.0504 0.3833 0.036*
H9B 0.4363 1.1060 0.2711 0.036*
H9C 0.5546 0.9102 0.3105 0.036*
C10 0.2393 (6) 0.5223 (5) 0.4497 (3) 0.0280 (9)
H10A 0.3164 0.4225 0.4954 0.042*
H10B 0.1361 0.4979 0.4342 0.042*
H10C 0.1930 0.6206 0.4874 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0214 (5) 0.0306 (5) 0.0163 (4) −0.0142 (4) 0.0000 (3) −0.0093 (4)
S2 0.0178 (4) 0.0206 (5) 0.0194 (5) −0.0040 (4) 0.0005 (3) −0.0038 (4)
S3 0.0173 (4) 0.0210 (5) 0.0207 (5) −0.0057 (4) −0.0023 (4) −0.0016 (4)
N1 0.0153 (15) 0.0221 (17) 0.0245 (17) −0.0071 (13) −0.0042 (12) −0.0058 (13)
N2 0.0209 (16) 0.0235 (17) 0.0146 (15) −0.0078 (13) 0.0004 (12) −0.0070 (13)
O1 0.0328 (17) 0.0331 (18) 0.0394 (18) −0.0133 (14) −0.0022 (14) −0.0010 (14)
O2 0.0262 (15) 0.0404 (18) 0.0368 (17) −0.0127 (13) 0.0034 (12) −0.0236 (14)
O3 0.0381 (17) 0.0426 (18) 0.0188 (14) −0.0216 (14) −0.0056 (12) −0.0014 (12)
O4 0.0357 (16) 0.0259 (16) 0.0254 (15) −0.0020 (13) −0.0083 (12) −0.0056 (12)
O5 0.0196 (14) 0.0361 (17) 0.0314 (16) −0.0106 (12) −0.0068 (12) −0.0019 (13)
O6 0.0330 (16) 0.0234 (15) 0.0272 (15) −0.0053 (12) −0.0050 (12) −0.0059 (12)
O7 0.0186 (13) 0.0409 (18) 0.0274 (15) −0.0162 (12) 0.0049 (11) −0.0151 (13)
O8 0.0302 (15) 0.0265 (15) 0.0230 (14) −0.0091 (12) −0.0045 (12) −0.0105 (12)
O9 0.0220 (13) 0.0283 (15) 0.0216 (14) −0.0147 (12) 0.0020 (11) −0.0083 (11)
C1 0.0161 (17) 0.0206 (19) 0.0201 (18) −0.0068 (15) −0.0023 (14) −0.0043 (15)
C2 0.0185 (17) 0.0152 (18) 0.0179 (18) −0.0024 (14) −0.0067 (14) −0.0025 (14)
C3 0.0127 (16) 0.0166 (18) 0.0185 (18) −0.0033 (14) −0.0016 (13) −0.0035 (14)
C4 0.0150 (16) 0.0226 (19) 0.0150 (17) −0.0081 (14) −0.0004 (13) −0.0040 (14)
C5 0.025 (2) 0.033 (2) 0.033 (2) −0.0163 (18) −0.0071 (17) −0.0088 (18)
C6 0.029 (2) 0.032 (2) 0.0184 (19) −0.0129 (18) 0.0041 (16) −0.0089 (17)
C7 0.0159 (17) 0.023 (2) 0.0136 (17) −0.0085 (15) 0.0010 (13) −0.0051 (14)
C8 0.0178 (18) 0.031 (2) 0.026 (2) −0.0027 (17) 0.0022 (16) −0.0050 (17)
C9 0.0219 (19) 0.035 (2) 0.023 (2) −0.0167 (17) −0.0028 (15) −0.0069 (17)
C10 0.032 (2) 0.031 (2) 0.022 (2) −0.0180 (19) 0.0004 (17) 0.0011 (17)

Geometric parameters (Å, º)

S1—O3 1.434 (3) O9—C3 1.207 (4)
S1—O2 1.436 (3) C1—C4 1.539 (5)
S1—C9 1.752 (4) C3—C4 1.539 (5)
S1—C7 1.823 (4) C4—C7 1.547 (5)
S2—O1 1.415 (3) C5—H5A 0.9800
S2—O4 1.434 (3) C5—H5B 0.9800
S2—C8 1.744 (4) C5—H5C 0.9800
S2—C7 1.876 (4) C6—H6A 0.9800
S3—O5 1.430 (3) C6—H6B 0.9800
S3—O6 1.432 (3) C6—H6C 0.9800
S3—C10 1.762 (4) C7—H7 1.0000
S3—C4 1.873 (4) C8—H8A 0.9800
N1—C1 1.358 (5) C8—H8B 0.9800
N1—C2 1.396 (5) C8—H8C 0.9800
N1—C5 1.471 (5) C9—H9A 0.9800
N2—C3 1.365 (5) C9—H9B 0.9800
N2—C2 1.392 (5) C9—H9C 0.9800
N2—C6 1.474 (5) C10—H10A 0.9800
O7—C1 1.211 (4) C10—H10B 0.9800
O8—C2 1.200 (4) C10—H10C 0.9800
O3—S1—O2 117.09 (19) C7—C4—S3 117.1 (2)
O3—S1—C9 108.84 (19) N1—C5—H5A 109.5
O2—S1—C9 109.23 (19) N1—C5—H5B 109.5
O3—S1—C7 107.80 (17) H5A—C5—H5B 109.5
O2—S1—C7 102.30 (17) N1—C5—H5C 109.5
C9—S1—C7 111.45 (17) H5A—C5—H5C 109.5
O1—S2—O4 118.50 (19) H5B—C5—H5C 109.5
O1—S2—C8 110.4 (2) N2—C6—H6A 109.5
O4—S2—C8 108.3 (2) N2—C6—H6B 109.5
O1—S2—C7 110.32 (17) H6A—C6—H6B 109.5
O4—S2—C7 104.43 (17) N2—C6—H6C 109.5
C8—S2—C7 103.80 (18) H6A—C6—H6C 109.5
O5—S3—O6 118.38 (18) H6B—C6—H6C 109.5
O5—S3—C10 111.37 (19) C4—C7—S1 126.6 (3)
O6—S3—C10 108.29 (19) C4—C7—S2 106.8 (2)
O5—S3—C4 107.38 (17) S1—C7—S2 110.83 (19)
O6—S3—C4 103.90 (17) C4—C7—H7 103.3
C10—S3—C4 106.69 (18) S1—C7—H7 103.3
C1—N1—C2 125.2 (3) S2—C7—H7 103.3
C1—N1—C5 118.2 (3) S2—C8—H8A 109.5
C2—N1—C5 116.4 (3) S2—C8—H8B 109.5
C3—N2—C2 124.9 (3) H8A—C8—H8B 109.5
C3—N2—C6 116.8 (3) S2—C8—H8C 109.5
C2—N2—C6 117.7 (3) H8A—C8—H8C 109.5
O7—C1—N1 123.2 (3) H8B—C8—H8C 109.5
O7—C1—C4 119.7 (3) S1—C9—H9A 109.5
N1—C1—C4 117.0 (3) S1—C9—H9B 109.5
O8—C2—N2 121.6 (3) H9A—C9—H9B 109.5
O8—C2—N1 120.9 (3) S1—C9—H9C 109.5
N2—C2—N1 117.4 (3) H9A—C9—H9C 109.5
O9—C3—N2 123.5 (3) H9B—C9—H9C 109.5
O9—C3—C4 119.5 (3) S3—C10—H10A 109.5
N2—C3—C4 116.9 (3) S3—C10—H10B 109.5
C1—C4—C3 113.4 (3) H10A—C10—H10B 109.5
C1—C4—C7 106.7 (3) S3—C10—H10C 109.5
C3—C4—C7 111.2 (3) H10A—C10—H10C 109.5
C1—C4—S3 105.6 (2) H10B—C10—H10C 109.5
C3—C4—S3 102.9 (2)
C2—N1—C1—O7 176.2 (4) O5—S3—C4—C1 179.8 (2)
C5—N1—C1—O7 0.3 (6) O6—S3—C4—C1 53.6 (3)
C2—N1—C1—C4 −6.8 (5) C10—S3—C4—C1 −60.7 (3)
C5—N1—C1—C4 177.2 (3) O5—S3—C4—C3 60.6 (3)
C3—N2—C2—O8 −175.6 (4) O6—S3—C4—C3 −65.6 (3)
C6—N2—C2—O8 12.9 (5) C10—S3—C4—C3 −179.9 (2)
C3—N2—C2—N1 7.1 (5) O5—S3—C4—C7 −61.6 (3)
C6—N2—C2—N1 −164.4 (3) O6—S3—C4—C7 172.2 (3)
C1—N1—C2—O8 173.7 (4) C10—S3—C4—C7 57.9 (3)
C5—N1—C2—O8 −10.2 (5) C1—C4—C7—S1 153.1 (3)
C1—N1—C2—N2 −8.9 (5) C3—C4—C7—S1 −82.7 (4)
C5—N1—C2—N2 167.1 (3) S3—C4—C7—S1 35.1 (4)
C2—N2—C3—O9 −173.7 (3) C1—C4—C7—S2 −73.5 (3)
C6—N2—C3—O9 −2.2 (5) C3—C4—C7—S2 50.7 (3)
C2—N2—C3—C4 10.1 (5) S3—C4—C7—S2 168.54 (17)
C6—N2—C3—C4 −178.3 (3) O3—S1—C7—C4 −55.8 (3)
O7—C1—C4—C3 −160.3 (3) O2—S1—C7—C4 −179.8 (3)
N1—C1—C4—C3 22.6 (5) C9—S1—C7—C4 63.5 (4)
O7—C1—C4—C7 −37.5 (5) O3—S1—C7—S2 172.24 (18)
N1—C1—C4—C7 145.4 (3) O2—S1—C7—S2 48.2 (2)
O7—C1—C4—S3 87.7 (4) C9—S1—C7—S2 −68.4 (2)
N1—C1—C4—S3 −89.3 (3) O1—S2—C7—C4 −110.8 (3)
O9—C3—C4—C1 159.5 (3) O4—S2—C7—C4 17.5 (3)
N2—C3—C4—C1 −24.2 (5) C8—S2—C7—C4 130.9 (3)
O9—C3—C4—C7 39.3 (4) O1—S2—C7—S1 30.6 (2)
N2—C3—C4—C7 −144.4 (3) O4—S2—C7—S1 158.95 (19)
O9—C3—C4—S3 −86.9 (4) C8—S2—C7—S1 −87.7 (2)
N2—C3—C4—S3 89.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5B···O8i 0.98 2.51 3.240 (6) 131
C6—H6A···O9ii 0.98 2.59 3.380 (5) 138
C8—H8C···O8iii 0.98 2.51 3.263 (5) 133
C10—H10A···O5iv 0.98 2.50 3.219 (5) 130

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) −x, −y+2, −z; (iv) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5040).

References

  1. Al-Sheikh, A., Sweidan, K., Kuhn, N., Maichle-Mössmer, C. & Steimann, M. (2009). Z. Naturforsch. Teil B, 64, 307–312.
  2. Awad, R., Mallah, E., Abu Dayyih, W., Sweidan, K. & Steimann, M. (2014). Acta Cryst. E70, o877. [DOI] [PMC free article] [PubMed]
  3. Demeunynck, M., Bailly, C. & David Wilson, W. (2004). In Small Molecule DNA and RNA Binders: From Synthesis to Nucleic Acid Complexes. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
  4. Getova, D. & Georgiev, V. (1989). Acta Physiol. Pharmacol. Bulg. 15, 83–88. [PubMed]
  5. Glidewell, C., Lightfoot, P. & Patterson, I. L. J. (1995). Acta Cryst. C51, 1648–1651.
  6. Habibi, A. & Tarameshloo, Z. (2011). J. Iran. Chem. Soc. 8, 287–291.
  7. Holtkamp, M. & Meierkord, H. (2007). Cell. Mol. Life Sci. 64, 2023–2041. [DOI] [PMC free article] [PubMed]
  8. Huang, X. & Chen, B. (1986). Synthesis, pp. 967–970.
  9. Kotha, S., Deb, A. C. & Kumar, R. (2005). Bioorg. Med. Chem. Lett. 15, 1039–1043. [DOI] [PubMed]
  10. Kratt, G., Salbeck, G., Bonin, W. & Duewel, D. (1990). Ger. Offen. DE 3 404-408.
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Stoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
  15. Sweidan, K., Abu-Rayyan, A., Al-Sheikh, A., Maichle-Mösmer, C., Steimann, M. & Kuhn, N. (2009). Z. Naturforsch. Teil B, 64, 106–110.
  16. Ye, F., Chen, B. & Huang, X. (1989). Synthesis, pp. 317–320.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014027455/su5040sup1.cif

e-71-00o58-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027455/su5040Isup2.hkl

e-71-00o58-Isup2.hkl (155.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027455/su5040Isup3.cml

. DOI: 10.1107/S2056989014027455/su5040fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

. DOI: 10.1107/S2056989014027455/su5040fig2.tif

A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

CCDC reference: 1039815

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES