Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):113–116. doi: 10.1107/S2056989014027406

A cyclic carbo-isosteric penta-depsipeptide: cyclo(Phe1d-Ala2–Gly3–Phe4–APO5)

Stéphanie M Guéret a,*, Trixie Wagner a
PMCID: PMC4331906  PMID: 25705467

Cyclo(Phe1d-Ala2–Gly3–Phe4–APO5) is the minor diastereoisomer of a cyclic penta-peptidomimetic analogue containing a novel 2-amino­propyl lactone (APO) motif, which displays the same number of atoms as the native amino acid glycine and has a methyl group in place of the carbonyl O atom.

Keywords: crystal structure, depsipeptide, peptidomimetic, carbo-isoster, β-turn, γ-turn

Abstract

The title compound, cyclo(Phe1d-Ala2–Gly3–Phe4–APO5), C26H32N4O5, is the minor diastereoisomer of a cyclic penta-peptidomimetic analogue containing a novel 2-amino­propyl lactone (APO) motif, which displays the same number of atoms as the native amino acid glycine and has a methyl group in place of the carbonyl O atom. The crystal structure presented here allows the analysis of the secondary structure of this unprecedented cyclic carbo-isosteric depsipeptide. The conformation of the central ring is stabilized by an intra­molecular N—H⋯O hydrogen bond between the carbonyl O atom of the first residue (Phe1) and the amide group H atom of the fourth residue (Phe4). Based on the previously reported hydrogen bond and on the values of the torsion angles ϕ and ψ, the loop formed by the first, second, third and fourth residues (Phe1, d-Ala2, Gly3 and Phe4) can be classified as a type II′ β-turn. The loop around the new peptidomimetic motif, on the other hand, resembles an open γ-turn containing a weak N—H⋯O hydrogen bond between the carbonyl group O atom of the fourth residue (Phe4) and the amide unit H atom of the first residue (Phe1). In the crystal, the peptidomimetic mol­ecules are arranged in chains along the b-axis direction. Within such a chain, the mol­ecules of the structure are linked via N—H⋯O hydrogen bonds between the amide group H atom of the secondary residue (d-Ala2) and the carb­oxy unit O atom of the fourth residue (Phe4) in a neighboring mol­ecule. The newly formed methyl stereocentre of the APO peptidomimetic motif (APO5) was obtained as the minor diastereoisomer in a ring-closing reductive amination reaction and adopts an R configuration.

Chemical context  

Cyclic peptidomimetics, with their ability to mimic the secondary structure of peptides, represent a very attractive class of macrocycles. While still being modular and promising a strong affinity for a broad range of biological targets, they have improved pharmacological properties and bioavailability compared to linear peptides. graphic file with name e-71-00113-scheme1.jpg

During our research, we have developed a highly selective cyclization method to access a new class of cyclic carbo-isosteric depsipeptides (Guéret et al., 2014). Our strategy allowed the formation of a novel APO motif which is believed to mimic the glycine amino-acid structure. In order to study the secondary structure of our peptidomimetic motifs, we have started crystallization trials for various analogues. The first compound for which we obtained crystals suitable for single crystal structure determination was the title compound cyclo(Phe1d-Ala2–Gly3–Phe4–APO5).

Structural commentary  

The cyclic carbo-isosteric depsipeptide cyclo(Phe1d-Ala2–Gly3–Phe4–APO5) was obtained as the minor diastereoisomer in a ring-closing reductive amination reaction between the C-terminal methyl ketone and the N-terminal amine of phenyl­alanine 1 of the linear precursor H2N–Phe1d-Ala2–Gly3–Phe4–CO2CH2COCH3. The two natural amino acids, Phe1 and Phe4 are in an l-configuration, whereas the unnatural alanine unit, Ala2 is in a d-configuration, following the Cahn–Ingold–Prelog priority rules or CORN rules (Cahn et al., 1966). Based on the known stereochemistry of the backbone amino acids, the absolute configuration of the newly formed methyl stereocentre α to the secondary amine (N9) of the minor diastereoisomer could be unambiguously assigned as C19R. The result is supported by a Flack x parameter of 0.10 (11), calculated using the quotient method (Parsons & Flack, 2004) as implemented in the 2013 version of SHELXL (Sheldrick, 2008). The structure of the title compound in the crystal, including the residue-labelling scheme, is shown in Fig. 1.

Figure 1.

Figure 1

The structure of the title compound in the crystal, including the residue-labelling scheme. Non-H atoms are represented by displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius. The atom labelling has been omitted for clarity but is displayed in Fig. 2.

The secondary structure of the cyclic peptidomimetic, in which all peptidic bonds adopt a trans conformation, is stabilized by a β-turn containing an intra­molecular hydrogen bond (Table 1, Fig. 2) between the carbonyl oxygen O23 of the first residue (Phe1) and the amide hydrogen N15—H15 of the residue located three residues after the first residue (Phe4). The related torsion angle values fall into the corresponding type II′ β-turn Ramachandran plot area (Ramachandran et al., 1963). The APO peptidomimetic motif adopts an open γ-turn with a loose hydrogen bond between the carbonyl oxygen of the lactone unit (O25) of the first residue (Phe4) and the secondary amine (N9) of the residue located two residues after the first (Phe1). Selected backbone torsion angles are given in Table 2 and a review on the secondary structure of peptides and proteins is given by Smith et al. (1980).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N9H9O25 0.95(3) 2.49(3) 3.338(3) 149(2)
N15H15O23 0.83(3) 2.08(3) 2.853(3) 155(2)
N18H18O34i 0.87(3) 2.29(3) 3.163(4) 177(3)
N21H21O25ii 0.80(3) 2.18(3) 2.949(3) 161(3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

The atom- and residue-labelling scheme of the title compound, showing the intra­molecular hydrogen bond. All atoms are represented as small spheres of arbitrary radius.

Table 2. Selected backbone torsion angles ().

Phe1 C10N9C8C22 1 61.6(2)
Phe1 N9C8C22N21 1 131.8(2)
D-Ala2 C22N21C20C19 2 55.4(2)
D-Ala2 N21C20C19N18 2 134.2(2)
Gly3 C19N18C17C16 3 79.0(3)
Gly3 N18C17C16N15 3 4.0(3)
Phe4 C16N15C14C13 4 121.6(2)
Phe4 N15C14C13O12 4 40.3(2)
APO5 C13O12C11C10 5 103.6(2)
APO5 O12C11C10N9 5 77.0(2)

Supra­molecular features  

The cyclo(Phe1d-Ala2–Gly3–Phe4–APO5) mol­ecules align in the crystal in infinite chains parallel to the b axis (Fig. 3). Within each chain, the peptide mol­ecules are linked via hydrogen bonds between O25 and N21—H21 (blue). The individual chains are loosely connected via hydrogen bonds between O34 and N18—H18 (orange).

Figure 3.

Figure 3

Packing diagram along the face diagonal of the plane defined by the a and c axes, showing the hydrogen-bonded chains parallel to b. Hydrogen bonds are indicated as green (intra­molecular), blue (inter­molecular within the chains) and orange (inter­molecular between chains) dotted lines. H atoms have been omitted for clarity.

Synthesis and crystallization  

Step 1 The linear precursor H2N-Phe1d-Ala2–Gly3–Phe4–CO2CH2COCH3 (90.7 mg, 152 µmol) was stirred in hydrogen chloride (4 M in 1,4-dioxane, 20.0 ml) at 0° C for 1 h, then at room temperature for 2 h. The reaction mixture was concentrated under reduced pressure and the resulting amine was used in the following step without further purification. Step 2 The previously obtained crude amine was dissolved in DMF (15.2 ml) and acetic acid (152 µl, 2.66 mmol) was added. The reaction mixture was stirred at room temperature for 1.5 h. Step 3 To the imine reaction mixture, sodium cyano­borohydride (11.5 mg, 182 µmol) was added followed by methanol (3.80 ml), leading to a final concentration of 8 mM with a 1:4 ratio of MeOH/DMF. The resulting reaction mixture was stirred at room temperature for 16 h and then concentrated under vacuum. The crude residue was directly purified by preparative RP-HPLC on an Atlantis Prep T3 OBD (30 × 150 mm; 5 µm) column at a flow rate of 60 ml/min with a step gradient of 5 to 15% for 2.5 min, 15 to 35% for 12 min, 35 to 45% for 2 min, then 45 to 95% for 0.1 min of MeCN in H2O + 0.1% TFA. Selected fractions were combined and lyophilized to yield the desired cyclic peptidomimetic (65.0 mg, 85%) as a white fluffy solid, TFA salt and a 81:19 mixture of two diastereoisomers. A fraction of the purified mixture of diastereoisomers (29 mg) was re-purified by preparative chiral-HPLC using a Chiralpak (20 × 250 mm; 5 µm) column at a flow rate of 12 ml/min with an optimized n-hepta­ne/i-PrOH/MeOH/DEA (80:18:2:0.03) isocratic gradient to afford the major diastereoisomer (16.0 mg, d.e. = 98.9%) as a desalted white fluffy solid and the minor diastereoisomer (3.2 mg, d.e. = 99.4%) as desalted white fluffy solid.

Crystallization of minor diastereoisomer Crystals of the title compound were obtained by dissolving the minor diastereo­isomer in a minimum amount of ethyl acetate and n-heptane (1:1) from which the solvents were allowed to slowly evapor­ate at room temperature.

Analytical data of the crystalline minor diastereoisomer HRMS (ESI) calculated for C26H33N4O5 [M + H]+: 481.2541, found 481.2448. IR (neat) νmax/cm−1 3335 (br), 3065, 3035, 2940, 1730, 1675 (br), 1545, 1480, 1455, 1205, 1135, 750, 725, 700. 1H NMR (600 MHz, (CD3)2SO) 8.81 (1H, dd, J = 7.2 and 5.2 Hz, NH), 8.59 (1H, d, J = 4.6 Hz, NH), 7.85 (1H, d, J = 9.7 Hz, NH), 7.33–7.16 (10H, m, 2 × Phe-5ArH), 4.77 (1H, td, J = 9.3 and 6.0 Hz, Phe-Hα), 3.97 (1H, dd, J = 7.1 and 4.6 Hz, Ala-Hα), 3.86–3.73 (3H, m, OCH 2 and Gly-Hα), 3.41 (1H, t, J = 7.3 Hz, Phe-Hα), 3.36–3.34 (2H, m, Gly-Hα), 3.18 (1H, dd, J = 13.9 and 6.0 Hz, Phe-Hβ), 2.94 (1H, dd, J = 13.9 and 9.0 Hz, Phe-Hβ), 2.68 (1H, dd, J = 13.6 and 6.5 Hz, Phe-Hβ), 2.62 (1H, dd, J = 13.6 and 8.0 Hz, Phe-Hβ), 2.59–2.53 (1H, m, CHCH3), 2.18 (1H, s, NHamine), 1.12 (3H, d, J = 7.0 Hz, Ala-3Hβ), 0.78 (3H, d, J = 6.4 Hz, CHCH 3). 13C NMR (150 MHz, (CD3)2SO) 176.5, 173.9, 170.2, 168.5, 138.6, 137.3, 129.2 (4 × CH), 128.4 (2 × CH), 127.9 (2 × CH), 126.6, 126.1, 67.5, 60.2, 52.8, 51.3, 50.1, 42.5, 39.5, 37.6, 17.4, 15.9.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-bound H atoms were calculated in idealized positions (C–H = 0.98–1.00 Å) and refined using a riding model with U iso(H) = 1.2U eq(parent atom). The hydrogen atoms of the amide groups and the hy­droxy group were located in a difference Fourier map and allowed to refine freely.

Table 3. Experimental details.

Crystal data
Chemical formula C26H32N4O5
M r 480.56
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c () 10.126(9), 15.096(14), 15.355(13)
V (3) 2347(4)
Z 4
Radiation type Cu K
(mm1) 0.78
Crystal size (mm) 0.12 0.07 0.05
 
Data collection
Diffractometer Bruker SMART 6000 CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1999)
T min, T max 0.486, 0.753
No. of measured, independent and observed [I > 2(I)] reflections 23011, 4133, 3847
R int 0.075
(sin /)max (1) 0.595
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.047, 0.112, 1.09
No. of reflections 4133
No. of parameters 330
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.31, 0.43
Absolute structure Flack x determined using 1590 quotients [(I +)(I )]/[(I +)+(I )] (Parsons Flack, 2004)
Absolute structure parameter 0.10(11)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2004), SHELXS97 and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014027406/lh5744sup1.cif

e-71-00113-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027406/lh5744Isup2.hkl

e-71-00113-Isup2.hkl (202.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027406/lh5744Isup3.cml

CCDC reference: 1039448

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Philippe Piechon for crystallizing the title compound.

supplementary crystallographic information

Crystal data

C26H32N4O5 Dx = 1.360 Mg m3
Mr = 480.56 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121 Cell parameters from 9940 reflections
a = 10.126 (9) Å θ = 4.1–68.8°
b = 15.096 (14) Å µ = 0.78 mm1
c = 15.355 (13) Å T = 100 K
V = 2347 (4) Å3 Block, colourless
Z = 4 0.12 × 0.07 × 0.05 mm
F(000) = 1024

Data collection

Bruker SMART 6000 CCD diffractometer 4133 independent reflections
Radiation source: Microstar rotating anode generator 3847 reflections with I > 2σ(I)
Incoatec multilayer mirrors monochromator Rint = 0.075
Detector resolution: 5.6 pixels mm-1 θmax = 66.6°, θmin = 4.1°
ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Sheldrick, 1999) k = −17→17
Tmin = 0.486, Tmax = 0.753 l = −18→18
23011 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0764P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.011
4133 reflections Δρmax = 0.31 e Å3
330 parameters Δρmin = −0.43 e Å3
0 restraints Absolute structure: Flack x determined using 1590 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
0 constraints Absolute structure parameter: 0.10 (11)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6916 (2) 0.75967 (14) 0.68262 (14) 0.0209 (4)
H1 0.6894 0.7333 0.7388 0.025*
C2 0.6031 (2) 0.82691 (14) 0.66282 (14) 0.0227 (4)
H2 0.5431 0.8475 0.7058 0.027*
C3 0.6026 (2) 0.86397 (14) 0.58022 (15) 0.0223 (4)
H3 0.5413 0.9095 0.5663 0.027*
C4 0.6915 (2) 0.83465 (15) 0.51801 (14) 0.0231 (4)
H4 0.6904 0.8594 0.4611 0.028*
C5 0.7827 (2) 0.76883 (14) 0.53901 (13) 0.0206 (4)
H5 0.8450 0.7501 0.4966 0.025*
C6 0.7835 (2) 0.73002 (14) 0.62175 (13) 0.0191 (4)
C7 0.8833 (2) 0.65948 (13) 0.64407 (13) 0.0191 (4)
H7A 0.9203 0.6354 0.5893 0.023*
H7B 0.8374 0.6105 0.6744 0.023*
C8 0.9979 (2) 0.69186 (13) 0.70179 (13) 0.0178 (4)
H8 1.0399 0.7448 0.6741 0.021*
N9 1.09594 (18) 0.62140 (11) 0.70982 (11) 0.0188 (4)
H9 1.056 (2) 0.5716 (19) 0.7369 (18) 0.023*
C10 1.2144 (2) 0.64565 (14) 0.76043 (13) 0.0196 (4)
H10 1.1909 0.6941 0.8021 0.024*
C11 1.2647 (2) 0.56634 (14) 0.81143 (14) 0.0213 (4)
H11A 1.2632 0.5130 0.7739 0.026*
H11B 1.3571 0.5770 0.8297 0.026*
O12 1.18248 (15) 0.55144 (9) 0.88820 (9) 0.0204 (3)
C13 1.0956 (2) 0.48517 (13) 0.88625 (14) 0.0196 (4)
C14 1.0182 (2) 0.48060 (14) 0.97123 (13) 0.0198 (4)
H14 1.0780 0.4536 1.0158 0.024*
N15 0.98462 (18) 0.56809 (12) 1.00179 (11) 0.0191 (4)
H15 0.949 (3) 0.6021 (18) 0.9664 (19) 0.023*
C16 1.0227 (2) 0.59836 (14) 1.08029 (13) 0.0184 (4)
C17 0.9816 (2) 0.69272 (14) 1.10269 (13) 0.0212 (4)
H17A 0.9236 0.6904 1.1545 0.025*
H17B 1.0619 0.7261 1.1194 0.025*
N18 0.9139 (2) 0.74228 (11) 1.03547 (11) 0.0197 (4)
H18 0.828 (3) 0.7378 (18) 1.0336 (17) 0.024*
C19 0.9831 (2) 0.77969 (13) 0.96966 (13) 0.0175 (4)
C20 0.8968 (2) 0.82801 (14) 0.90145 (13) 0.0197 (4)
H20 0.8026 0.8097 0.9090 0.024*
N21 0.94164 (18) 0.80253 (12) 0.81497 (12) 0.0188 (4)
H21 0.953 (3) 0.8414 (19) 0.7802 (19) 0.023*
C22 0.94722 (18) 0.71732 (13) 0.79294 (13) 0.0165 (4)
O23 0.91694 (15) 0.65798 (9) 0.84460 (9) 0.0196 (3)
C24 1.3230 (2) 0.67838 (15) 0.69969 (15) 0.0236 (5)
H24A 1.3504 0.6301 0.6610 0.035*
H24B 1.3988 0.6982 0.7342 0.035*
H24C 1.2896 0.7279 0.6647 0.035*
O25 1.08111 (16) 0.43461 (10) 0.82577 (10) 0.0245 (3)
C26 0.8961 (2) 0.42006 (14) 0.96385 (15) 0.0238 (5)
H26A 0.9245 0.3609 0.9434 0.029*
H26B 0.8563 0.4128 1.0223 0.029*
C27 0.7928 (2) 0.45570 (14) 0.90239 (15) 0.0222 (5)
C28 0.7071 (2) 0.52271 (15) 0.92819 (15) 0.0244 (5)
H28 0.7078 0.5426 0.9869 0.029*
C29 0.6201 (2) 0.56087 (15) 0.86874 (17) 0.0275 (5)
H29 0.5631 0.6072 0.8872 0.033*
C30 0.6156 (2) 0.53217 (15) 0.78319 (16) 0.0271 (5)
H30 0.5568 0.5590 0.7428 0.033*
C31 0.6983 (2) 0.46364 (15) 0.75708 (15) 0.0254 (5)
H31 0.6950 0.4426 0.6988 0.030*
C32 0.7853 (2) 0.42612 (15) 0.81573 (15) 0.0245 (5)
H32 0.8413 0.3793 0.7971 0.029*
O33 1.08418 (17) 0.55439 (10) 1.13399 (10) 0.0268 (4)
O34 1.10326 (14) 0.77972 (10) 0.96627 (9) 0.0220 (3)
C35 0.9080 (3) 0.92754 (14) 0.91424 (15) 0.0258 (5)
H35A 1.0002 0.9458 0.9067 0.039*
H35B 0.8783 0.9431 0.9730 0.039*
H35C 0.8527 0.9579 0.8712 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0215 (10) 0.0231 (10) 0.0180 (10) −0.0008 (9) 0.0012 (8) 0.0021 (8)
C2 0.0219 (10) 0.0258 (10) 0.0206 (11) 0.0004 (9) 0.0018 (8) −0.0027 (8)
C3 0.0211 (10) 0.0214 (10) 0.0244 (11) 0.0019 (9) −0.0031 (9) −0.0020 (8)
C4 0.0258 (11) 0.0238 (10) 0.0197 (10) −0.0018 (9) −0.0035 (9) 0.0019 (9)
C5 0.0214 (11) 0.0239 (11) 0.0163 (10) 0.0001 (8) −0.0017 (8) −0.0022 (8)
C6 0.0191 (10) 0.0199 (10) 0.0183 (10) −0.0038 (8) −0.0030 (8) −0.0015 (8)
C7 0.0221 (10) 0.0192 (10) 0.0160 (9) −0.0009 (8) −0.0005 (8) −0.0017 (8)
C8 0.0202 (10) 0.0172 (9) 0.0161 (9) −0.0002 (8) −0.0009 (8) 0.0029 (7)
N9 0.0199 (9) 0.0186 (9) 0.0180 (9) 0.0007 (7) −0.0003 (7) −0.0003 (7)
C10 0.0206 (11) 0.0209 (10) 0.0174 (10) −0.0004 (8) −0.0006 (8) −0.0028 (8)
C11 0.0191 (10) 0.0262 (11) 0.0186 (10) 0.0001 (8) 0.0023 (8) 0.0007 (9)
O12 0.0213 (7) 0.0245 (8) 0.0153 (7) −0.0021 (6) 0.0003 (6) 0.0002 (6)
C13 0.0207 (10) 0.0161 (9) 0.0221 (10) 0.0023 (8) −0.0013 (8) 0.0006 (8)
C14 0.0248 (11) 0.0190 (10) 0.0157 (9) 0.0008 (9) −0.0005 (8) 0.0021 (8)
N15 0.0253 (9) 0.0165 (8) 0.0155 (9) 0.0030 (7) −0.0023 (7) 0.0015 (7)
C16 0.0187 (10) 0.0229 (10) 0.0137 (9) −0.0011 (8) 0.0009 (8) 0.0029 (8)
C17 0.0284 (11) 0.0204 (10) 0.0148 (10) −0.0001 (9) 0.0004 (9) −0.0001 (7)
N18 0.0205 (9) 0.0203 (9) 0.0183 (9) 0.0002 (7) 0.0008 (7) 0.0006 (7)
C19 0.0228 (11) 0.0151 (9) 0.0145 (9) 0.0016 (8) 0.0000 (8) −0.0030 (7)
C20 0.0217 (10) 0.0193 (10) 0.0182 (10) 0.0019 (9) 0.0007 (8) −0.0003 (8)
N21 0.0260 (9) 0.0169 (9) 0.0134 (8) −0.0004 (7) 0.0001 (7) 0.0023 (7)
C22 0.0154 (9) 0.0188 (10) 0.0153 (10) −0.0001 (7) −0.0038 (7) 0.0012 (8)
O23 0.0240 (7) 0.0194 (7) 0.0153 (7) −0.0010 (6) 0.0002 (6) 0.0011 (5)
C24 0.0233 (10) 0.0239 (10) 0.0237 (11) 0.0002 (9) −0.0006 (9) −0.0003 (8)
O25 0.0272 (8) 0.0244 (7) 0.0219 (8) 0.0005 (7) −0.0011 (6) −0.0057 (6)
C26 0.0273 (11) 0.0189 (10) 0.0251 (11) −0.0004 (9) 0.0024 (9) 0.0027 (8)
C27 0.0200 (10) 0.0173 (10) 0.0294 (11) −0.0052 (8) 0.0027 (9) 0.0024 (8)
C28 0.0225 (11) 0.0234 (10) 0.0273 (11) −0.0047 (9) 0.0041 (9) −0.0040 (9)
C29 0.0189 (11) 0.0236 (11) 0.0399 (14) −0.0003 (9) 0.0004 (9) −0.0027 (10)
C30 0.0207 (10) 0.0233 (11) 0.0374 (13) −0.0024 (9) −0.0028 (9) 0.0022 (10)
C31 0.0220 (11) 0.0266 (11) 0.0275 (12) −0.0054 (9) −0.0004 (9) −0.0038 (9)
C32 0.0220 (11) 0.0205 (10) 0.0309 (11) −0.0016 (9) 0.0025 (9) −0.0034 (9)
O33 0.0357 (9) 0.0265 (8) 0.0183 (7) 0.0055 (7) −0.0044 (7) 0.0016 (6)
O34 0.0221 (8) 0.0232 (7) 0.0206 (7) −0.0003 (6) −0.0016 (6) −0.0003 (6)
C35 0.0357 (12) 0.0195 (10) 0.0221 (10) 0.0034 (10) −0.0016 (9) −0.0014 (8)

Geometric parameters (Å, º)

C1—C2 1.387 (3) C16—C17 1.523 (3)
C1—C6 1.393 (3) C17—N18 1.447 (3)
C1—H1 0.9500 C17—H17A 0.9900
C2—C3 1.386 (3) C17—H17B 0.9900
C2—H2 0.9500 N18—C19 1.353 (3)
C3—C4 1.385 (3) N18—H18 0.87 (3)
C3—H3 0.9500 C19—O34 1.218 (3)
C4—C5 1.394 (3) C19—C20 1.546 (3)
C4—H4 0.9500 C20—N21 1.455 (3)
C5—C6 1.399 (3) C20—C35 1.519 (3)
C5—H5 0.9500 C20—H20 1.0000
C6—C7 1.507 (3) N21—C22 1.331 (3)
C7—C8 1.540 (3) N21—H21 0.80 (3)
C7—H7A 0.9900 C22—O23 1.235 (3)
C7—H7B 0.9900 C24—H24A 0.9800
C8—N9 1.460 (3) C24—H24B 0.9800
C8—C22 1.539 (3) C24—H24C 0.9800
C8—H8 1.0000 C26—C27 1.508 (3)
N9—C10 1.475 (3) C26—H26A 0.9900
N9—H9 0.95 (3) C26—H26B 0.9900
C10—C11 1.519 (3) C27—C28 1.391 (3)
C10—C24 1.524 (3) C27—C32 1.406 (4)
C10—H10 1.0000 C28—C29 1.393 (4)
C11—O12 1.461 (3) C28—H28 0.9500
C11—H11A 0.9900 C29—C30 1.384 (4)
C11—H11B 0.9900 C29—H29 0.9500
O12—C13 1.333 (3) C30—C31 1.390 (4)
C13—O25 1.211 (3) C30—H30 0.9500
C13—C14 1.523 (3) C31—C32 1.381 (4)
C14—N15 1.442 (3) C31—H31 0.9500
C14—C26 1.542 (3) C32—H32 0.9500
C14—H14 1.0000 C35—H35A 0.9800
N15—C16 1.345 (3) C35—H35B 0.9800
N15—H15 0.83 (3) C35—H35C 0.9800
C16—O33 1.228 (3)
C2—C1—C6 121.3 (2) N18—C17—C16 116.85 (18)
C2—C1—H1 119.4 N18—C17—H17A 108.1
C6—C1—H1 119.4 C16—C17—H17A 108.1
C3—C2—C1 119.9 (2) N18—C17—H17B 108.1
C3—C2—H2 120.1 C16—C17—H17B 108.1
C1—C2—H2 120.1 H17A—C17—H17B 107.3
C4—C3—C2 120.0 (2) C19—N18—C17 120.2 (2)
C4—C3—H3 120.0 C19—N18—H18 121.6 (18)
C2—C3—H3 120.0 C17—N18—H18 117.1 (18)
C3—C4—C5 119.9 (2) O34—C19—N18 123.31 (19)
C3—C4—H4 120.0 O34—C19—C20 122.35 (19)
C5—C4—H4 120.0 N18—C19—C20 114.24 (19)
C4—C5—C6 120.81 (19) N21—C20—C35 110.87 (18)
C4—C5—H5 119.6 N21—C20—C19 108.49 (17)
C6—C5—H5 119.6 C35—C20—C19 109.68 (18)
C1—C6—C5 118.1 (2) N21—C20—H20 109.3
C1—C6—C7 121.49 (19) C35—C20—H20 109.3
C5—C6—C7 120.40 (18) C19—C20—H20 109.3
C6—C7—C8 114.32 (17) C22—N21—C20 120.04 (18)
C6—C7—H7A 108.7 C22—N21—H21 122.1 (19)
C8—C7—H7A 108.7 C20—N21—H21 117.4 (19)
C6—C7—H7B 108.7 O23—C22—N21 121.80 (19)
C8—C7—H7B 108.7 O23—C22—C8 119.05 (18)
H7A—C7—H7B 107.6 N21—C22—C8 119.11 (18)
N9—C8—C22 109.38 (16) C10—C24—H24A 109.5
N9—C8—C7 109.26 (17) C10—C24—H24B 109.5
C22—C8—C7 110.56 (17) H24A—C24—H24B 109.5
N9—C8—H8 109.2 C10—C24—H24C 109.5
C22—C8—H8 109.2 H24A—C24—H24C 109.5
C7—C8—H8 109.2 H24B—C24—H24C 109.5
C8—N9—C10 114.60 (16) C27—C26—C14 113.00 (18)
C8—N9—H9 109.2 (15) C27—C26—H26A 109.0
C10—N9—H9 107.9 (15) C14—C26—H26A 109.0
N9—C10—C11 110.42 (17) C27—C26—H26B 109.0
N9—C10—C24 110.16 (18) C14—C26—H26B 109.0
C11—C10—C24 109.20 (18) H26A—C26—H26B 107.8
N9—C10—H10 109.0 C28—C27—C32 117.8 (2)
C11—C10—H10 109.0 C28—C27—C26 120.9 (2)
C24—C10—H10 109.0 C32—C27—C26 121.1 (2)
O12—C11—C10 110.26 (17) C27—C28—C29 120.6 (2)
O12—C11—H11A 109.6 C27—C28—H28 119.7
C10—C11—H11A 109.6 C29—C28—H28 119.7
O12—C11—H11B 109.6 C30—C29—C28 120.9 (2)
C10—C11—H11B 109.6 C30—C29—H29 119.6
H11A—C11—H11B 108.1 C28—C29—H29 119.6
C13—O12—C11 118.28 (16) C29—C30—C31 119.2 (2)
O25—C13—O12 124.8 (2) C29—C30—H30 120.4
O25—C13—C14 124.47 (19) C31—C30—H30 120.4
O12—C13—C14 110.74 (17) C32—C31—C30 120.1 (2)
N15—C14—C13 111.01 (17) C32—C31—H31 120.0
N15—C14—C26 112.16 (19) C30—C31—H31 120.0
C13—C14—C26 112.10 (18) C31—C32—C27 121.4 (2)
N15—C14—H14 107.1 C31—C32—H32 119.3
C13—C14—H14 107.1 C27—C32—H32 119.3
C26—C14—H14 107.1 C20—C35—H35A 109.5
C16—N15—C14 122.33 (19) C20—C35—H35B 109.5
C16—N15—H15 120.0 (18) H35A—C35—H35B 109.5
C14—N15—H15 117.2 (18) C20—C35—H35C 109.5
O33—C16—N15 124.3 (2) H35A—C35—H35C 109.5
O33—C16—C17 119.49 (19) H35B—C35—H35C 109.5
N15—C16—C17 116.21 (18)
C6—C1—C2—C3 2.0 (3) O33—C16—C17—N18 177.65 (19)
C1—C2—C3—C4 −0.9 (3) N15—C16—C17—N18 −4.0 (3)
C2—C3—C4—C5 −1.0 (3) C16—C17—N18—C19 −79.0 (3)
C3—C4—C5—C6 1.7 (3) C17—N18—C19—O34 −5.5 (3)
C2—C1—C6—C5 −1.2 (3) C17—N18—C19—C20 178.25 (17)
C2—C1—C6—C7 177.58 (19) O34—C19—C20—N21 49.5 (3)
C4—C5—C6—C1 −0.6 (3) N18—C19—C20—N21 −134.16 (19)
C4—C5—C6—C7 −179.45 (19) O34—C19—C20—C35 −71.7 (3)
C1—C6—C7—C8 −75.1 (3) N18—C19—C20—C35 104.6 (2)
C5—C6—C7—C8 103.7 (2) C35—C20—N21—C22 175.89 (19)
C6—C7—C8—N9 −172.90 (16) C19—C20—N21—C22 55.4 (2)
C6—C7—C8—C22 66.7 (2) C20—N21—C22—O23 −1.1 (3)
C22—C8—N9—C10 −61.6 (2) C20—N21—C22—C8 −178.64 (17)
C7—C8—N9—C10 177.27 (17) N9—C8—C22—O23 −45.8 (2)
C8—N9—C10—C11 145.33 (18) C7—C8—C22—O23 74.5 (2)
C8—N9—C10—C24 −94.0 (2) N9—C8—C22—N21 131.84 (19)
N9—C10—C11—O12 −77.0 (2) C7—C8—C22—N21 −107.8 (2)
C24—C10—C11—O12 161.69 (17) N15—C14—C26—C27 59.4 (2)
C10—C11—O12—C13 103.6 (2) C13—C14—C26—C27 −66.3 (2)
C11—O12—C13—O25 1.6 (3) C14—C26—C27—C28 −78.9 (3)
C11—O12—C13—C14 −179.37 (16) C14—C26—C27—C32 97.2 (2)
O25—C13—C14—N15 −140.7 (2) C32—C27—C28—C29 −2.1 (3)
O12—C13—C14—N15 40.3 (2) C26—C27—C28—C29 174.1 (2)
O25—C13—C14—C26 −14.4 (3) C27—C28—C29—C30 1.0 (3)
O12—C13—C14—C26 166.61 (17) C28—C29—C30—C31 0.7 (3)
C13—C14—N15—C16 −121.6 (2) C29—C30—C31—C32 −1.2 (3)
C26—C14—N15—C16 112.1 (2) C30—C31—C32—C27 0.0 (3)
C14—N15—C16—O33 −2.8 (3) C28—C27—C32—C31 1.7 (3)
C14—N15—C16—C17 178.95 (19) C26—C27—C32—C31 −174.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N9—H9···O25 0.95 (3) 2.49 (3) 3.338 (3) 149 (2)
N15—H15···O23 0.83 (3) 2.08 (3) 2.853 (3) 155 (2)
N18—H18···O34i 0.87 (3) 2.29 (3) 3.163 (4) 177 (3)
N21—H21···O25ii 0.80 (3) 2.18 (3) 2.949 (3) 161 (3)

Symmetry codes: (i) x−1/2, −y+3/2, −z+2; (ii) −x+2, y+1/2, −z+3/2.

References

  1. Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cahn, R. S., Ingold, C. K. & Prelog, V. (1966). Angew. Chem. Int. Ed. Engl. 5, 385–415.
  4. Guéret, S. M., Meier, P. & Roth, H. J. (2014). Org. Lett. 16, 1502–1505. [DOI] [PubMed]
  5. Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.
  6. Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. (1963). J. Mol. Biol. 7, 95–99. [DOI] [PubMed]
  7. Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Smith, J. A., Pease, L. G. & Kopple, K. D. (1980). Crit. Rev. Biochem. Mol. Biol. 8, 315–399. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014027406/lh5744sup1.cif

e-71-00113-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027406/lh5744Isup2.hkl

e-71-00113-Isup2.hkl (202.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027406/lh5744Isup3.cml

CCDC reference: 1039448

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES