Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o8–o9. doi: 10.1107/S2056989014025845

Crystal structure of 3-(4-chloro­phen­oxy)-4-(2-nitro­phen­yl)azetidin-2-one with an unknown solvate

Sevim Türktekin Çelikesir a, Mehmet Akkurt a,*, Aliasghar Jarrahpour b, Habib Allah Shafie b, Ömer Çelik c
PMCID: PMC4331907  PMID: 25705514

Abstract

In the title compound, C15H11ClN2O4, the central β-lactam ring is approximately planar [maximum deviation = 0.044 (2) Å for the N atom from the mean plane] and subtends dihedral angles of 61.17 (11) and 40.21 (12) °, respectively, with the nitro and chloro­benzene rings. Both substituents lie to the same side of the β-lactam core. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into C(4) chains propagating in [010]. The chains are cross-linked by C—H⋯O and weak C—H⋯π inter­actions, generating a three-dimensional network. The solvent mol­ecules were found to be highly disordered and their contribution to the scattering was removed with the SQUEEZE procedure in PLATON [Spek (2009). Acta Cryst. D65, 148–155], which indicated a solvent cavity of volume 318 Å3 containing approximately 114 electrons. These solvent mol­ecules are not considered in the given chemical formula and other crystal data.

Keywords: crystal structure, β-lactam ring, C(4) chain, hydrogen bonding, N-unsubstituted 2-azetidinone, hydrogen bonds, C—H⋯π inter­actions

Related literature  

For the application of N-unsubstituted 2-azetidinones in the synthesis of β-lactam anti­biotics, see: Cossio et al. (1987); Jarrahpour & Zarei (2007, 2008). For a related structure with a β-lactam ring, see: Butcher et al. (2011).graphic file with name e-71-000o8-scheme1.jpg

Experimental  

Crystal data  

  • C15H11ClN2O4

  • M r = 318.71

  • Monoclinic, Inline graphic

  • a = 16.9505 (4) Å

  • b = 4.6517 (1) Å

  • c = 21.7167 (6) Å

  • β = 99.757 (1)°

  • V = 1687.56 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • 16293 measured reflections

  • 4358 independent reflections

  • 3158 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.135

  • S = 1.04

  • 4358 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014025845/hb7322sup1.cif

e-71-000o8-sup1.cif (187.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025845/hb7322Isup2.hkl

e-71-000o8-Isup2.hkl (239.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014025845/hb7322Isup3.cml

. DOI: 10.1107/S2056989014025845/hb7322fig1.tif

View of the title compound with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

b . DOI: 10.1107/S2056989014025845/hb7322fig2.tif

View of the hydrogen bonding of the title compound along b axis. Only H atoms involved in H bonding are shown.

CCDC reference: 1036035

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg2 is the centroid of the nitrobenzene ring (C4C9).

DHA DH HA D A DHA
N1H1O1i 0.86 2.09 2.936(2) 166
C8H8O3ii 0.93 2.53 3.307(2) 142
C15H15O2iii 0.93 2.51 3.338(2) 149
C3H3Cg2iv 0.98 2.70 3.5118(19) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are indebted to the X-ray laboratory of Dicle University Scientific and Technological Applied and Research Center, Diyarbakir, Turkey, for use of the X-ray diffractometer. AJ and HAS thank the Shiraz University Research Council for financial support.

supplementary crystallographic information

S1. Comment

N-Unsubstituted 2-azetidinones offer major synthetic opportunities in the synthesis of β-lactam antibiotics such as the carbapenems, penams, monobactams, nocardicins, and the glutamine synthetase inhibitor, tabtoxin (Cossio, et al., 1987) The application of N-unsubstituted 2-azetidinones in the semi-synthesis of the anticancer agents, Taxol and Taxotere has also been reported (Jarrahpour, et al., 2007). N-Unsubstituted 2-azetidinones have been prepared by several methods. Among these methods, oxidative cleavage by ceric ammonium nitrate (CAN) of p-alkoxyphenyl moiety attached to the nitrogen of the β-lactam ring offers the most direct synthesis of N-unsubstituted β-lactams (Jarrahpour, et al., 2008).

In the title compound (Fig. 1), the β-lactam ring is nearly planar with a maximum deviation of 0.044 (2) Å for N1 from the mean plane. The carboxyl O atom O1 attached to the β-lactam ring deviates by -0.137 (1) Å from the mean plane of the ring. The β-lactam ring makes dihedral angles of 61.17 (11) and 40.21 (12) ° with the nitro and choloro-benzene rings, respectively.

All bond lengths and angles are comparable with those reported in a related structure (Butcher et al., 2011).

In the crystal, molecules are linked into [010] C(4) chains by N—H···O hydrogen bonds. C—H···O hydrogen bonds (Fig. 2) and weak C—H···π interactions link the chains into a three-dimensional network (Table 1).

S2. Experimental

A solution of (NH4)2Ce(NO3)6 (CAN) (3.00 mmol) in water (15.00 ml) was added dropwise to a solution of β-lactam (1.00 mmol) in CH3CN (30.00 ml) at room temperature and stirred for 45 min. Then water (30.00 ml) was added and the mixture was extracted with EtOAc (3 × 20 ml) and washed with 10% of NaHCO3 (40 ml). The aqueous layer of NaHCO3 was extracted again with EtOAc (15 ml), and all organic extracts were combined and washed successively with 10% NaHSO3 (2×30 ml), 10% NaHCO3 (20 ml), brine (20 ml) and then dried over sodium sulfate. After filtration and evaporation of the solvent in vacuo, the crude product was purified by column chromatography or recrystallization from hexane/EtOAc (4:6) solution to give colourless prisms (Yield 75%). Mp 350–352 K IR (KBr, cm-1): 1774 (CO β-lactam), 3217 (NH). 1H NMR (250 MHz, DMSO-d6) δ(p.p.m.): 5.74 (H-3, d, 1H, J=5.5 Hz), 6.23 (H-4, d, 1H, J=5.5 Hz), 7.27–8.15 (aromatic H, m, 8H), 9.13 (NH, brs, 1H). 13C NMR (62.9 MHz, DMSO-d6) δ(p.p.m.): 54.60 (C-4), 83.18 (C-3), 117.5, 124.7, 125.9, 128.7, 128.9, 129.1, 132.8, 134.4, 147.4, 155.8 (aromatic carbons), 165.90 (CO, β- lactam). Analysis calculated for C15H11ClN2O4: C, 51.01; H, 2.85; N, 7.93%. Found: C, 51.03; H, 2.87; N, 7.91%.

S3. Refinement

C and N-bound H atoms were positioned geometrically (C—H = 0.93 - 0.98 Å and N—H =0.86 Å), and refined using a riding model with Uiso(H) = 1.2Ueq(C,N). The twenty two reflections were omitted owing to bad disagreement. The crystal quality and data was not good enough. A region of disordered electron density, most probably disordered solvent molecules, occupying voids of ca 318 Å3 for an electron count of 114, was removed with the SQUEEZE procedure in PLATON [Spek (2009). Acta Cryst. D65, 148–155] following unsuccessful attempts to model it as a plausible solvent molecule. Their formula mass and unit-cell characteristics were not taken into account during refinement.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Fig. 2.

Fig. 2.

View of the hydrogen bonding of the title compound along b axis. Only H atoms involved in H bonding are shown.

Crystal data

C15H11ClN2O4 F(000) = 656
Mr = 318.71 Dx = 1.254 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6230 reflections
a = 16.9505 (4) Å θ = 2.4–28.7°
b = 4.6517 (1) Å µ = 0.24 mm1
c = 21.7167 (6) Å T = 296 K
β = 99.757 (1)° Prism, colourless
V = 1687.56 (7) Å3 0.30 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3158 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.022
Graphite monochromator θmax = 28.8°, θmin = 1.7°
φ and ω scans h = −21→22
16293 measured reflections k = −6→6
4358 independent reflections l = −28→29

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.3362P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
4358 reflections Δρmax = 0.35 e Å3
199 parameters Δρmin = −0.23 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.77735 (3) 0.02466 (16) 0.86934 (3) 0.0896 (2)
O1 0.34325 (8) 0.4694 (3) 0.80529 (6) 0.0684 (5)
O2 0.49880 (7) 0.6846 (3) 0.60857 (6) 0.0615 (5)
O3 0.53550 (8) 0.3225 (3) 0.55969 (6) 0.0686 (5)
O4 0.46717 (6) 0.2832 (2) 0.71337 (5) 0.0437 (3)
N1 0.30955 (8) 0.6612 (4) 0.70465 (6) 0.0523 (5)
N2 0.48444 (8) 0.4599 (3) 0.58069 (6) 0.0440 (4)
C1 0.35588 (9) 0.5438 (4) 0.75408 (7) 0.0462 (5)
C2 0.42874 (8) 0.5444 (3) 0.72098 (7) 0.0374 (4)
C3 0.36874 (9) 0.6469 (4) 0.66256 (7) 0.0399 (5)
C4 0.34857 (9) 0.4352 (3) 0.60981 (7) 0.0377 (4)
C5 0.27331 (10) 0.3099 (4) 0.59775 (8) 0.0503 (5)
C6 0.25251 (11) 0.1159 (5) 0.54958 (9) 0.0632 (7)
C7 0.30631 (13) 0.0396 (4) 0.51201 (9) 0.0625 (7)
C8 0.38224 (11) 0.1547 (4) 0.52289 (7) 0.0509 (6)
C9 0.40248 (9) 0.3484 (3) 0.57097 (7) 0.0387 (5)
C10 0.54003 (8) 0.2358 (3) 0.75211 (7) 0.0387 (4)
C11 0.55796 (12) 0.3387 (5) 0.81220 (8) 0.0661 (7)
C12 0.63188 (13) 0.2760 (6) 0.84797 (8) 0.0733 (8)
C13 0.68458 (10) 0.1055 (5) 0.82418 (8) 0.0559 (6)
C14 0.66690 (10) 0.0022 (4) 0.76469 (9) 0.0555 (6)
C15 0.59401 (9) 0.0697 (4) 0.72819 (8) 0.0470 (5)
H1 0.26120 0.72420 0.69920 0.0630*
H2 0.46700 0.69550 0.73710 0.0450*
H3 0.38230 0.83720 0.64800 0.0480*
H5 0.23580 0.35770 0.62280 0.0600*
H6 0.20140 0.03640 0.54260 0.0760*
H7 0.29160 −0.08920 0.47930 0.0750*
H8 0.41950 0.10220 0.49800 0.0610*
H11 0.52090 0.44930 0.82870 0.0790*
H12 0.64530 0.35050 0.88810 0.0880*
H14 0.70350 −0.11280 0.74870 0.0670*
H15 0.58190 0.00190 0.68740 0.0560*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0624 (3) 0.1234 (6) 0.0723 (3) 0.0190 (3) −0.0193 (3) 0.0066 (3)
O1 0.0550 (7) 0.1050 (12) 0.0494 (7) −0.0149 (7) 0.0209 (6) 0.0013 (7)
O2 0.0577 (7) 0.0584 (9) 0.0733 (8) −0.0162 (6) 0.0251 (6) −0.0204 (7)
O3 0.0539 (7) 0.0755 (10) 0.0824 (9) 0.0055 (7) 0.0291 (7) −0.0164 (8)
O4 0.0356 (5) 0.0379 (7) 0.0547 (6) 0.0017 (5) −0.0002 (4) −0.0061 (5)
N1 0.0371 (7) 0.0678 (11) 0.0547 (8) 0.0115 (7) 0.0153 (6) −0.0048 (7)
N2 0.0467 (7) 0.0474 (9) 0.0407 (6) −0.0008 (6) 0.0152 (5) 0.0008 (6)
C1 0.0378 (8) 0.0556 (11) 0.0471 (8) −0.0065 (7) 0.0130 (6) −0.0086 (8)
C2 0.0338 (7) 0.0349 (9) 0.0448 (7) −0.0034 (6) 0.0107 (6) −0.0054 (6)
C3 0.0388 (7) 0.0364 (9) 0.0468 (8) 0.0046 (6) 0.0139 (6) 0.0006 (7)
C4 0.0385 (7) 0.0336 (8) 0.0408 (7) 0.0029 (6) 0.0058 (6) 0.0060 (6)
C5 0.0383 (8) 0.0536 (11) 0.0582 (9) 0.0017 (7) 0.0057 (7) 0.0038 (8)
C6 0.0496 (10) 0.0607 (13) 0.0722 (12) −0.0118 (9) −0.0102 (9) 0.0016 (10)
C7 0.0732 (13) 0.0551 (12) 0.0522 (9) −0.0058 (10) −0.0093 (9) −0.0082 (9)
C8 0.0623 (10) 0.0483 (11) 0.0408 (8) 0.0036 (9) 0.0051 (7) −0.0030 (7)
C9 0.0431 (8) 0.0354 (9) 0.0375 (7) 0.0016 (7) 0.0065 (6) 0.0032 (6)
C10 0.0348 (7) 0.0390 (9) 0.0424 (7) −0.0039 (6) 0.0069 (6) 0.0008 (6)
C11 0.0613 (11) 0.0918 (17) 0.0446 (9) 0.0206 (11) 0.0075 (8) −0.0113 (10)
C12 0.0692 (12) 0.1051 (19) 0.0405 (9) 0.0120 (12) −0.0056 (8) −0.0085 (10)
C13 0.0451 (9) 0.0680 (13) 0.0511 (9) 0.0025 (9) −0.0021 (7) 0.0074 (9)
C14 0.0402 (8) 0.0628 (13) 0.0621 (10) 0.0075 (8) 0.0050 (7) −0.0067 (9)
C15 0.0396 (8) 0.0516 (11) 0.0481 (8) −0.0014 (7) 0.0030 (6) −0.0101 (8)

Geometric parameters (Å, º)

Cl1—C13 1.7474 (18) C8—C9 1.378 (2)
O1—C1 1.218 (2) C10—C15 1.366 (2)
O2—N2 1.2118 (19) C10—C11 1.375 (2)
O3—N2 1.2245 (19) C11—C12 1.389 (3)
O4—C2 1.4016 (17) C12—C13 1.360 (3)
O4—C10 1.3891 (18) C13—C14 1.363 (3)
N1—C1 1.335 (2) C14—C15 1.386 (2)
N1—C3 1.469 (2) C2—H2 0.9800
N2—C9 1.464 (2) C3—H3 0.9800
C1—C2 1.531 (2) C5—H5 0.9300
N1—H1 0.8600 C6—H6 0.9300
C2—C3 1.560 (2) C7—H7 0.9300
C3—C4 1.505 (2) C8—H8 0.9300
C4—C5 1.387 (2) C11—H11 0.9300
C4—C9 1.404 (2) C12—H12 0.9300
C5—C6 1.381 (3) C14—H14 0.9300
C6—C7 1.370 (3) C15—H15 0.9300
C7—C8 1.377 (3)
C2—O4—C10 116.71 (11) C10—C11—C12 119.42 (18)
C1—N1—C3 96.38 (13) C11—C12—C13 119.89 (18)
O2—N2—O3 122.79 (14) Cl1—C13—C14 119.24 (15)
O2—N2—C9 118.87 (13) Cl1—C13—C12 119.92 (14)
O3—N2—C9 118.34 (13) C12—C13—C14 120.82 (17)
O1—C1—N1 132.86 (15) C13—C14—C15 119.57 (17)
O1—C1—C2 135.24 (15) C10—C15—C14 120.02 (16)
N1—C1—C2 91.90 (12) O4—C2—H2 112.00
C1—N1—H1 132.00 C1—C2—H2 112.00
C3—N1—H1 132.00 C3—C2—H2 112.00
O4—C2—C1 118.81 (12) N1—C3—H3 112.00
O4—C2—C3 114.90 (12) C2—C3—H3 112.00
C1—C2—C3 85.17 (11) C4—C3—H3 112.00
N1—C3—C2 85.85 (11) C4—C5—H5 119.00
C2—C3—C4 116.85 (14) C6—C5—H5 119.00
N1—C3—C4 114.34 (14) C5—C6—H6 120.00
C3—C4—C9 123.94 (14) C7—C6—H6 120.00
C3—C4—C5 120.12 (14) C6—C7—H7 120.00
C5—C4—C9 115.94 (14) C8—C7—H7 120.00
C4—C5—C6 121.75 (16) C7—C8—H8 120.00
C5—C6—C7 120.68 (18) C9—C8—H8 120.00
C6—C7—C8 119.63 (18) C10—C11—H11 120.00
C7—C8—C9 119.33 (16) C12—C11—H11 120.00
N2—C9—C8 116.69 (14) C11—C12—H12 120.00
C4—C9—C8 122.66 (15) C13—C12—H12 120.00
N2—C9—C4 120.65 (13) C13—C14—H14 120.00
C11—C10—C15 120.23 (15) C15—C14—H14 120.00
O4—C10—C11 123.40 (14) C10—C15—H15 120.00
O4—C10—C15 116.34 (13) C14—C15—H15 120.00
C10—O4—C2—C3 156.31 (12) C2—C3—C4—C9 −70.06 (19)
C2—O4—C10—C11 32.5 (2) C3—C4—C9—N2 1.0 (2)
C2—O4—C10—C15 −149.62 (14) C3—C4—C9—C8 −179.81 (15)
C10—O4—C2—C1 −105.11 (15) C3—C4—C5—C6 179.68 (17)
C3—N1—C1—C2 6.71 (14) C9—C4—C5—C6 −1.2 (2)
C3—N1—C1—O1 −173.8 (2) C5—C4—C9—N2 −178.08 (14)
C1—N1—C3—C2 −6.60 (14) C5—C4—C9—C8 1.1 (2)
C1—N1—C3—C4 111.06 (16) C4—C5—C6—C7 0.3 (3)
O3—N2—C9—C4 158.62 (14) C5—C6—C7—C8 0.8 (3)
O2—N2—C9—C8 158.71 (15) C6—C7—C8—C9 −0.9 (3)
O3—N2—C9—C8 −20.7 (2) C7—C8—C9—C4 −0.1 (2)
O2—N2—C9—C4 −22.0 (2) C7—C8—C9—N2 179.17 (15)
N1—C1—C2—C3 −6.30 (14) O4—C10—C11—C12 178.78 (18)
N1—C1—C2—O4 −122.13 (15) C15—C10—C11—C12 1.0 (3)
O1—C1—C2—O4 58.4 (3) O4—C10—C15—C14 −177.37 (15)
O1—C1—C2—C3 174.2 (2) C11—C10—C15—C14 0.6 (3)
O4—C2—C3—N1 125.34 (13) C10—C11—C12—C13 −2.4 (3)
C1—C2—C3—N1 5.73 (12) C11—C12—C13—Cl1 −179.60 (18)
C1—C2—C3—C4 −109.51 (14) C11—C12—C13—C14 2.2 (4)
O4—C2—C3—C4 10.09 (19) Cl1—C13—C14—C15 −178.84 (15)
N1—C3—C4—C9 −168.11 (14) C12—C13—C14—C15 −0.6 (3)
C2—C3—C4—C5 108.95 (17) C13—C14—C15—C10 −0.8 (3)
N1—C3—C4—C5 10.9 (2)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the nitrobenzene ring (C4–C9).

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.09 2.936 (2) 166
C8—H8···O3ii 0.93 2.53 3.307 (2) 142
C15—H15···O2iii 0.93 2.51 3.338 (2) 149
C3—H3···Cg2iv 0.98 2.70 3.5118 (19) 141

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) x, y−1, z; (iv) x, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7322).

References

  1. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Butcher, R. J., Akkurt, M., Jarrahpour, A. & Badrabady, S. A. T. (2011). Acta Cryst. E67, o1101–o1102. [DOI] [PMC free article] [PubMed]
  3. Cossio, F. P., Lecea, B. & Palomo, C. (1987). J. Chem. Soc. Chem. Commun. pp. 1743–1744.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Jarrahpour, A. & Zarei, M. (2007). Molecules, 12, 2364–2379. [DOI] [PMC free article] [PubMed]
  6. Jarrahpour, A. & Zarei, M. (2008). Synth. Commun. 38, 1837–1845.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014025845/hb7322sup1.cif

e-71-000o8-sup1.cif (187.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025845/hb7322Isup2.hkl

e-71-000o8-Isup2.hkl (239.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014025845/hb7322Isup3.cml

. DOI: 10.1107/S2056989014025845/hb7322fig1.tif

View of the title compound with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

b . DOI: 10.1107/S2056989014025845/hb7322fig2.tif

View of the hydrogen bonding of the title compound along b axis. Only H atoms involved in H bonding are shown.

CCDC reference: 1036035

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES