Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):35–37. doi: 10.1107/S2056989014026358

Crystal structure of (Z)-2-[(E)-2-benzyl­idene­hydrazin-1-yl­idene]-1,2-di­phenyl­ethanone

Abdelaziz Bouchama a, Messaoud Yahiaoui b, Chaabane Chiter b, Zouaoui Setifi c,a,*, Jim Simpson d
PMCID: PMC4331908  PMID: 25705444

The title compound has an almost planar 1,2-di­benzyl­idenehydrazine backbone with an approximately orthogonal planar phenyl ethanone substituent on one of the imine C atoms. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional structure.

Keywords: crystal structure, Schiff base, azines, dimers, C—H⋯π contacts

Abstract

The title compound, C21H16N2O, has an almost planar (r.m.s. deviation = 0.0074 Å) 1,2-di­benzyl­idenehydrazine backbone with an approximately orthogonal almost planar (r.m.s. deviation = 0.0368 Å) phenyl­ethanone substituent on one of the imine C atoms. The dihedral angle between the two mean planes is 76.99 (4)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds and C—H⋯π contacts, forming a three-dimensional structure with mol­ecules stacked along the a-axis direction.

Chemical context  

Aromatic carbonyl compounds react easily with hydrazines to form hydrazones, which can condense with a second mol­ecule of a carbonyl compound to yield an azine. As a result of their fascinating physical and chemical properties, azines and their derivatives have been utilized extensively in areas such as dyes (Kim et al., 2010) and non-linear fluoro­phores (Facchetti et al., 2002). They are also noted for their biological and pharmaceutical applications (Wadher et al., 2009; Pandeya et al., 1999). Furthermore, there are many reports of polyazines as highly conjugated polymers functioning in electronic, optoelectronic and photonic applications (Dudis et al., 1993). As part of our studies of Schiff base azines, the title compound was synthesized and its mol­ecular and crystal structure are reported on herein.graphic file with name e-71-00035-scheme1.jpg

Structural commentary  

The mol­ecule of the title compound, Fig. 1, comprises a 1,2-di­benzyl­idenehydrazine backbone with a phenyl ethanone substituent on atom C2. Both the hydrazine and ethanone fragments are approximately planar with r.m.s. deviations of 0.0074 Å from the O1/C1/C11–C16 mean plane and 0.0368 Å from the plane through the 16 atoms of the di­benzyl­idenehydrazine unit. The two mean planes are almost orthogonal with a dihedral angle of 76.99 (4)°. The mol­ecule adopts a Z conformation with respect to the C2=N1 bond and an E conformation with respect to the C3=N2 bond, with the carbonyl atom O1 and the C11–C16 phenyl ring located on opposite sides of the di­benzyl­idenehydrazine plane. The bond lengths and angles in the title mol­ecule agree reasonably well with those found in closely related structures (Abbasi et al., 2007; Wieland et al., 2011).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, a pair of C35—H35⋯O1 hydrogen bonds link adjacent mol­ecules into dimers with Inline graphic(20) ring motifs (Fig. 2 and Table 1). Atom O1 is also involved in two further C—H⋯O hydrogen bonds, C3—H3⋯O1 and C32—H32⋯O1 that generate Inline graphic(6) ring motifs. These contacts link the dimers into stacks parallel to (011); see Table 1 and Fig. 2. Inter­estingly, neither of the hydrazine N atoms are involved in significantly close inter­molecular contacts with the shortest inter­molecular H12⋯N1 contact being ca 2.85 Å. A contribution to the packing is, however, made by a C—H⋯π inter­action (Table 1). These inter­actions link mol­ecules in a head-to-tail fashion, forming chains along c, as shown in Fig. 3. With 16 mol­ecules in the ortho­rhom­bic unit cell, these various contacts combine to form a three dimensional structure with mol­ecules stacked along the a-axis direction, as shown in Fig. 4.

Figure 2.

Figure 2

A view of the dimers formed via C—H⋯O contacts (blue dashed lines; see Table 1 for details) and linked into stacks running parallel to (011) in the crystal of the title compound.

Table 1. Hydrogen-bond geometry (, ).

Cg is the centroid of the C31C36 phenyl ring.

DHA DH HA D A DHA
C35H35O1i 0.95 2.61 3.337(3) 134
C3H3O1ii 0.95 2.41 3.272(3) 151
C32H32O1ii 0.95 2.68 3.478(3) 141
C26H26Cg iii 0.95 2.97 3.699(3) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

A view of the chains along the c-axis direction formed by C—H⋯π contacts in the crystal of the title compound (shown as green dotted lines with the ring centroids displayed as coloured spheres, see Table 1 for details).

Figure 4.

Figure 4

A view along the a-axis direction of the crystal packing of the title compound. Hydrogen bonds are drawn as blue dashed lines with a representative C—H⋯π contact shown as a green dotted line (see Table 1 for details).

Database survey  

A search for the (benzyl­idenehydrazono)-1,2-di­phenyl­ethanone skeleton in the Cambridge Structural Database (Version 5.35, November 2013 with three updates; Groom & Allen, 2014) revealed only 7 similar compounds. The closest to the title structure are 2-{(Z)-2-[(E)-1-(2-hy­droxy­phen­yl)methyl­idene]hydrazono}-1,2-di­phenyl­ethan-1-one (Abbasi et al., 2007), with an hy­droxy substituent in the p position on the equivalent of the benzene ring, and 1,2-diphenyl-2-[4-(4-pyrid­yl)benzyl­idenehydrazono]ethan-1-one, with a pyridyl ring in the same position (Patra & Ng, 2009). Two reports of polymorphs of the symmetrical 2,2′-(1,2-hydrazinediyl­idene)-bis­(di­phenyl­ethanone) have also appeared (Patra et al., 2009; Wieland et al., 2011)

Synthesis and crystallization  

A mixture of benzaldehyde (0.01 mol, 1.06 g), benzil (0.01 mol, 2.10 g) and hydrazine hydrate (0.01 mol, 0.32 g) in 50 ml of ethanol containing 2 drops of acetic acid was refluxed for about 2 h. The reaction was monitored by TLC until completion. Excess solvent was evaporated under vacuum and the resulting yellow solid product was recrystallized from absolute ethanol to afford yellow needles of the title compound (m.p. 453 K, 75% yield). Analysis calculated for C21H16N2O (312.36): C 80.75, H 5.16, N 8.97%; found: C 80.73, H 5.17, N 9.01%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with U iso = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C21H16N2O
M r 312.36
Crystal system, space group Orthorhombic, F2d d
Temperature (K) 150
a, b, c () 8.1653(3), 27.6113(11), 29.6818(13)
V (3) 6691.9(5)
Z 16
Radiation type Mo K
(mm1) 0.08
Crystal size (mm) 0.55 0.29 0.24
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2006)
T min, T max 0.884, 0.982
No. of measured, independent and observed [I > 2(I)] reflections 8049, 3350, 3036
R int 0.032
(sin /)max (1) 0.649
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.039, 0.094, 1.06
No. of reflections 3350
No. of parameters 217
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.18, 0.16

Computer programs: APEX2 and SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL2014 (Sheldrick, 2008), Mercury (Macrae et al., 2008), CRYSCAL (T. Roisnel, local program), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), WinGX (Farrugia, 2012) and publCIF (Westrip 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026358/su5029sup1.cif

e-71-00035-sup1.cif (291.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026358/su5029Isup2.hkl

e-71-00035-Isup2.hkl (184.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026358/su5029Isup3.cml

CCDC reference: 1036846

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development, and Ferhat Abbas Sétif 1 University for financial support. The Chemistry Department of the University of Otago is also thanked for support of the work of JS. Dr Lahcène Ouahab from the University of Rennes 1, France, is thanked for the data collection.

supplementary crystallographic information

Crystal data

C21H16N2O F(000) = 2624
Mr = 312.36 Dx = 1.240 Mg m3
Orthorhombic, F2dd Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F -2d 2 Cell parameters from 2807 reflections
a = 8.1653 (3) Å θ = 2.7–27.3°
b = 27.6113 (11) Å µ = 0.08 mm1
c = 29.6818 (13) Å T = 150 K
V = 6691.9 (5) Å3 Prism, yellow
Z = 16 0.55 × 0.29 × 0.24 mm

Data collection

Bruker APEXII diffractometer 3036 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.032
CCD rotation images, thin slices scans θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −9→10
Tmin = 0.884, Tmax = 0.982 k = −35→24
8049 measured reflections l = −38→38
3350 independent reflections

Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0407P)2 + 4.1058P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3350 reflections Δρmax = 0.18 e Å3
217 parameters Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C11 0.4692 (3) 0.24563 (8) 0.36467 (7) 0.0255 (5)
C12 0.4156 (3) 0.28709 (9) 0.34210 (7) 0.0316 (5)
H12 0.4758 0.3164 0.3444 0.038*
C13 0.2746 (3) 0.28525 (11) 0.31643 (9) 0.0426 (7)
H13 0.2381 0.3134 0.3010 0.051*
C14 0.1865 (3) 0.24267 (12) 0.31313 (10) 0.0504 (8)
H14 0.0888 0.2418 0.2958 0.060*
C15 0.2393 (4) 0.20147 (11) 0.33483 (10) 0.0453 (7)
H15 0.1790 0.1722 0.3322 0.054*
C16 0.3810 (3) 0.20282 (9) 0.36059 (8) 0.0326 (6)
H16 0.4178 0.1744 0.3755 0.039*
C1 0.6212 (3) 0.24786 (8) 0.39198 (6) 0.0222 (4)
O1 0.7037 (2) 0.28433 (5) 0.39542 (5) 0.0300 (4)
C2 0.6774 (3) 0.20274 (8) 0.41744 (7) 0.0220 (5)
C21 0.6542 (3) 0.20065 (8) 0.46670 (6) 0.0234 (5)
C22 0.5622 (3) 0.23566 (9) 0.48904 (7) 0.0291 (5)
H22 0.5110 0.2608 0.4723 0.035*
C23 0.5449 (3) 0.23409 (10) 0.53561 (8) 0.0344 (6)
H23 0.4825 0.2582 0.5507 0.041*
C24 0.6182 (3) 0.19755 (11) 0.55991 (8) 0.0401 (6)
H24 0.6067 0.1966 0.5917 0.048*
C25 0.7083 (4) 0.16228 (11) 0.53816 (8) 0.0406 (7)
H25 0.7575 0.1369 0.5550 0.049*
C26 0.7272 (3) 0.16376 (9) 0.49169 (8) 0.0332 (6)
H26 0.7901 0.1396 0.4769 0.040*
N1 0.7555 (2) 0.16872 (7) 0.39690 (6) 0.0265 (4)
N2 0.7675 (2) 0.17867 (7) 0.35026 (6) 0.0255 (4)
C3 0.8450 (3) 0.14520 (8) 0.32965 (7) 0.0245 (5)
H3 0.8903 0.1192 0.3465 0.029*
C31 0.8657 (3) 0.14596 (8) 0.28078 (7) 0.0252 (5)
C32 0.9510 (3) 0.10863 (9) 0.25997 (8) 0.0307 (5)
H32 0.9991 0.0838 0.2777 0.037*
C33 0.9664 (3) 0.10743 (10) 0.21338 (8) 0.0383 (6)
H33 1.0228 0.0814 0.1993 0.046*
C34 0.9002 (3) 0.14389 (9) 0.18749 (8) 0.0371 (6)
H34 0.9115 0.1431 0.1556 0.045*
C35 0.8166 (3) 0.18203 (10) 0.20799 (8) 0.0346 (6)
H35 0.7721 0.2074 0.1902 0.041*
C36 0.7987 (3) 0.18291 (9) 0.25427 (8) 0.0294 (5)
H36 0.7406 0.2087 0.2682 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C11 0.0250 (11) 0.0314 (12) 0.0200 (9) 0.0026 (11) 0.0015 (8) 0.0014 (8)
C12 0.0328 (13) 0.0337 (13) 0.0283 (11) 0.0066 (11) −0.0003 (10) 0.0044 (10)
C13 0.0368 (15) 0.0525 (17) 0.0385 (14) 0.0136 (14) −0.0061 (11) 0.0126 (12)
C14 0.0283 (15) 0.076 (2) 0.0472 (15) −0.0018 (15) −0.0157 (12) 0.0105 (15)
C15 0.0348 (15) 0.0542 (17) 0.0471 (15) −0.0116 (14) −0.0096 (12) 0.0049 (13)
C16 0.0298 (13) 0.0375 (14) 0.0304 (11) −0.0016 (12) −0.0019 (9) 0.0049 (10)
C1 0.0268 (11) 0.0233 (11) 0.0166 (8) 0.0035 (10) 0.0021 (8) −0.0012 (8)
O1 0.0370 (10) 0.0233 (8) 0.0298 (8) −0.0021 (8) −0.0063 (7) 0.0013 (6)
C2 0.0214 (11) 0.0228 (10) 0.0217 (9) −0.0008 (10) −0.0023 (8) 0.0004 (8)
C21 0.0236 (12) 0.0262 (11) 0.0205 (9) −0.0027 (9) −0.0012 (8) 0.0029 (8)
C22 0.0292 (13) 0.0311 (13) 0.0268 (11) 0.0028 (11) 0.0008 (9) 0.0009 (9)
C23 0.0317 (14) 0.0428 (15) 0.0288 (12) 0.0041 (12) 0.0054 (10) −0.0010 (10)
C24 0.0344 (14) 0.0655 (18) 0.0203 (10) 0.0006 (14) 0.0028 (10) 0.0063 (12)
C25 0.0372 (15) 0.0549 (17) 0.0297 (12) 0.0075 (14) −0.0009 (10) 0.0153 (11)
C26 0.0347 (14) 0.0367 (14) 0.0284 (12) 0.0061 (12) 0.0004 (10) 0.0079 (10)
N1 0.0320 (11) 0.0263 (10) 0.0212 (9) 0.0019 (9) −0.0025 (8) 0.0019 (7)
N2 0.0317 (11) 0.0248 (10) 0.0201 (9) 0.0012 (9) −0.0014 (8) −0.0013 (7)
C3 0.0258 (12) 0.0213 (11) 0.0265 (10) −0.0013 (10) −0.0021 (8) 0.0005 (9)
C31 0.0237 (12) 0.0250 (11) 0.0268 (10) −0.0049 (10) −0.0009 (9) −0.0034 (9)
C32 0.0327 (14) 0.0296 (12) 0.0299 (12) 0.0014 (11) 0.0035 (9) −0.0009 (9)
C33 0.0395 (16) 0.0419 (15) 0.0335 (13) −0.0008 (13) 0.0100 (10) −0.0070 (11)
C34 0.0386 (15) 0.0490 (16) 0.0238 (10) −0.0104 (13) 0.0031 (10) −0.0019 (10)
C35 0.0359 (14) 0.0378 (14) 0.0299 (12) −0.0038 (12) −0.0064 (10) 0.0054 (10)
C36 0.0319 (13) 0.0256 (12) 0.0307 (11) −0.0002 (11) −0.0049 (10) 0.0005 (9)

Geometric parameters (Å, º)

C11—C16 1.390 (3) C23—H23 0.9500
C11—C12 1.397 (3) C24—C25 1.381 (4)
C11—C1 1.483 (3) C24—H24 0.9500
C12—C13 1.382 (4) C25—C26 1.388 (3)
C12—H12 0.9500 C25—H25 0.9500
C13—C14 1.382 (4) C26—H26 0.9500
C13—H13 0.9500 N1—N2 1.415 (2)
C14—C15 1.377 (4) N2—C3 1.276 (3)
C14—H14 0.9500 C3—C31 1.461 (3)
C15—C16 1.387 (4) C3—H3 0.9500
C15—H15 0.9500 C31—C32 1.389 (3)
C16—H16 0.9500 C31—C36 1.400 (3)
C1—O1 1.216 (3) C32—C33 1.389 (3)
C1—C2 1.528 (3) C32—H32 0.9500
C2—N1 1.288 (3) C33—C34 1.377 (4)
C2—C21 1.476 (3) C33—H33 0.9500
C21—C22 1.392 (3) C34—C35 1.395 (4)
C21—C26 1.394 (3) C34—H34 0.9500
C22—C23 1.390 (3) C35—C36 1.382 (3)
C22—H22 0.9500 C35—H35 0.9500
C23—C24 1.377 (4) C36—H36 0.9500
C16—C11—C12 119.5 (2) C23—C24—C25 120.2 (2)
C16—C11—C1 121.1 (2) C23—C24—H24 119.9
C12—C11—C1 119.4 (2) C25—C24—H24 119.9
C13—C12—C11 119.7 (2) C24—C25—C26 120.2 (2)
C13—C12—H12 120.1 C24—C25—H25 119.9
C11—C12—H12 120.1 C26—C25—H25 119.9
C12—C13—C14 120.3 (2) C25—C26—C21 120.2 (2)
C12—C13—H13 119.9 C25—C26—H26 119.9
C14—C13—H13 119.9 C21—C26—H26 119.9
C15—C14—C13 120.4 (2) C2—N1—N2 110.84 (16)
C15—C14—H14 119.8 C3—N2—N1 111.29 (17)
C13—C14—H14 119.8 N2—C3—C31 121.5 (2)
C14—C15—C16 119.8 (3) N2—C3—H3 119.2
C14—C15—H15 120.1 C31—C3—H3 119.2
C16—C15—H15 120.1 C32—C31—C36 119.1 (2)
C15—C16—C11 120.2 (2) C32—C31—C3 119.3 (2)
C15—C16—H16 119.9 C36—C31—C3 121.6 (2)
C11—C16—H16 119.9 C31—C32—C33 120.4 (2)
O1—C1—C11 122.96 (19) C31—C32—H32 119.8
O1—C1—C2 117.85 (19) C33—C32—H32 119.8
C11—C1—C2 119.19 (19) C34—C33—C32 120.2 (2)
N1—C2—C21 120.24 (19) C34—C33—H33 119.9
N1—C2—C1 120.61 (18) C32—C33—H33 119.9
C21—C2—C1 118.91 (18) C33—C34—C35 120.1 (2)
C22—C21—C26 118.99 (19) C33—C34—H34 120.0
C22—C21—C2 120.9 (2) C35—C34—H34 120.0
C26—C21—C2 120.1 (2) C36—C35—C34 119.9 (2)
C23—C22—C21 120.4 (2) C36—C35—H35 120.0
C23—C22—H22 119.8 C34—C35—H35 120.0
C21—C22—H22 119.8 C35—C36—C31 120.3 (2)
C24—C23—C22 120.0 (2) C35—C36—H36 119.8
C24—C23—H23 120.0 C31—C36—H36 119.8
C22—C23—H23 120.0
C16—C11—C12—C13 0.7 (3) C2—C21—C22—C23 −178.2 (2)
C1—C11—C12—C13 179.7 (2) C21—C22—C23—C24 −0.4 (4)
C11—C12—C13—C14 0.2 (4) C22—C23—C24—C25 −0.3 (4)
C12—C13—C14—C15 −1.0 (4) C23—C24—C25—C26 0.8 (4)
C13—C14—C15—C16 0.7 (5) C24—C25—C26—C21 −0.5 (4)
C14—C15—C16—C11 0.2 (4) C22—C21—C26—C25 −0.2 (4)
C12—C11—C16—C15 −1.0 (3) C2—C21—C26—C25 178.7 (2)
C1—C11—C16—C15 −179.9 (2) C21—C2—N1—N2 −178.27 (18)
C16—C11—C1—O1 178.1 (2) C1—C2—N1—N2 −3.8 (3)
C12—C11—C1—O1 −0.8 (3) C2—N1—N2—C3 179.9 (2)
C16—C11—C1—C2 −2.4 (3) N1—N2—C3—C31 176.64 (19)
C12—C11—C1—C2 178.7 (2) N2—C3—C31—C32 −180.0 (2)
O1—C1—C2—N1 −100.0 (2) N2—C3—C31—C36 −1.3 (3)
C11—C1—C2—N1 80.6 (3) C36—C31—C32—C33 −1.4 (4)
O1—C1—C2—C21 74.6 (3) C3—C31—C32—C33 177.3 (2)
C11—C1—C2—C21 −104.9 (2) C31—C32—C33—C34 1.5 (4)
N1—C2—C21—C22 −176.3 (2) C32—C33—C34—C35 −0.4 (4)
C1—C2—C21—C22 9.1 (3) C33—C34—C35—C36 −0.7 (4)
N1—C2—C21—C26 4.9 (3) C34—C35—C36—C31 0.7 (4)
C1—C2—C21—C26 −169.7 (2) C32—C31—C36—C35 0.4 (4)
C26—C21—C22—C23 0.6 (4) C3—C31—C36—C35 −178.3 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C31–C36 phenyl ring.

D—H···A D—H H···A D···A D—H···A
C35—H35···O1i 0.95 2.61 3.337 (3) 134
C3—H3···O1ii 0.95 2.41 3.272 (3) 151
C32—H32···O1ii 0.95 2.68 3.478 (3) 141
C26—H26···Cgiii 0.95 2.97 3.699 (3) 135

Symmetry codes: (i) x, −y+1/2, −z+1/2; (ii) x+1/4, y−1/4, −z+3/4; (iii) x+1/4, −y+1/4, z+1/4.

References

  1. Abbasi, A., Mohammadi Ziarani, G. & Tarighi, S. (2007). Acta Cryst. E63, o2579–o2580.
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  3. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  4. Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dudis, D. S., Yeates, A. T., Kost, D., Smith, D. A. & Medrano, J. (1993). J. Am. Chem. Soc. 115, 8770–8774.
  6. Facchetti, A., Abbotto, A., Beverina, L., van der Boom, M. E., Dutta, P., Evmenenko, G., Marks, T. J. & Pagani, G. A. (2002). Chem. Mater. 14, 4996–5005.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Kim, S. H., Gwon, S. Y., Burkinshaw, S. M. & Son, Y. A. (2010). Dyes Pigm. 87, 268–271.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Pharm. Acta Helv. 74, 11–17. [DOI] [PubMed]
  12. Patra, G. K., Mukherjee, A. & Ng, S. W. (2009). Acta Cryst. E65, o1745. [DOI] [PMC free article] [PubMed]
  13. Patra, G. K. & Ng, S. W. (2009). Acta Cryst. E65, o1810. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Wadher, J. S., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). J. Pharm. Tech. Res. 1, 22–33.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Wieland, M., Seichter, W., Schwarzer, A. & Weber, E. (2011). Struct. Chem. 22, 1267–1279.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026358/su5029sup1.cif

e-71-00035-sup1.cif (291.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026358/su5029Isup2.hkl

e-71-00035-Isup2.hkl (184.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026358/su5029Isup3.cml

CCDC reference: 1036846

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES