Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o20. doi: 10.1107/S2056989014025353

Crystal structure of 1-methane­sulfonyl-1,2,3,4-tetra­hydro­quinoline

S Jeyaseelan a, S L Nagendra Babu b, G Venkateshappa c, P Raghavendra Kumar c, B S Palakshamurthy b,*
PMCID: PMC4331909  PMID: 25705484

Abstract

In the title compound, C10H13NO2S, the heterocyclic ring adopts a half-chair conformation and the bond-angle sum at the N atom is 347.9°. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R 2 2(8) loops.

Keywords: crystal structure; 1,2,3,4-tetra­hydro­quinoline; physiological activities; photosensitizers

Related literature  

For background to tetra­hydro­quinolines, see: Chulakov et al. (2012); Kadutskii et al. (2012); Katritsky et al. (1996); Keith et al. (2001). For a related structure, see: Jeyaseelan et al. (2014).graphic file with name e-71-00o20-scheme1.jpg

Experimental  

Crystal data  

  • C10H13NO2S

  • M r = 211.27

  • Triclinic, Inline graphic

  • a = 5.5865 (2) Å

  • b = 9.2195 (4) Å

  • c = 10.1924 (4) Å

  • α = 85.798 (2)°

  • β = 84.686 (2)°

  • γ = 77.166 (2)°

  • V = 508.89 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 294 K

  • 0.24 × 0.20 × 0.16 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.933, T max = 0.955

  • 7417 measured reflections

  • 1973 independent reflections

  • 1844 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.106

  • S = 1.07

  • 1973 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008);; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014025353/hb7314sup1.cif

e-71-00o20-sup1.cif (252.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025353/hb7314Isup2.hkl

e-71-00o20-Isup2.hkl (108.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014025353/hb7314Isup3.cml

. DOI: 10.1107/S2056989014025353/hb7314fig1.tif

The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

. DOI: 10.1107/S2056989014025353/hb7314fig2.tif

The mol­ecular packing of the title compound, dashed lines indicates the inversion dimers linked by pairs of C—H⋯O hydrogen bonds with Inline graphic(8) ring motifs.

CCDC reference: 1034951

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C10H10CO2i 0.96 2.50 3.431(2) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

SJ thanks Vision Group on Science and Technology, Government of Karnataka, for awarding a major project under CISE scheme (reference No. VGST/CISE/GRD-192/2013–14). BSP thanks Rajegowda, Department of Studies and Research in Physics, UCS, Tumkur University, Karnataka 572 103, India, for his support.

supplementary crystallographic information

S1. Chemical context

Derivatives of tetra­hydro­quinolines display a wide range of physiological activities, they been found to be pesticides, anti­oxidants, photosensitizers, and dyes (Katritsky et al., 1996). Heterocyclic compounds of 1,2,3,4-tetra­hydro­quinoline derivatives play important role in synthesize efficient kinetic resolution with predominant (S,S)-(R,R)-diastereoisomers (Chulakov et al., 2012), optically active camphor moieties (Kadutskii et al., 2012), and biologically active compounds, synthetic inter­mediates (Keith et al., 2001).

In due course of our study, we have synthised a series of 1,2,3,4-tetra­hydro­quinoline with derivatives of suloponyl chlorides they exhibit a few pharmacological activities (our unpublished data). As a part of our study we have undertaken crystal structure determination of the title compound and the results are compared with crystal structure of 1-tosyl-1,2,3,4-tetra­hydro­quinoline­(II) (Jeyaseelan et al., 2014) .

S2. Structural commentary

The molecular structure of the title compound(I) is shown in Fig. 1. In both the compounds (I) and (II), the C1/C6–C9/N1 rings are in a half-chair conformation, with the methyl­ene C9 atom as the flap, but the bond-angle sum at the N atom in the compound (I) and (II) are 347.9° and 350.2°, respectively.

S3. Supra­molecular features

In the crystal, inversion dimers linked by pairs of C10—H10C···O2 hydrogen bonds generate R22(8) ring motifs.

S4. Synthesis and crystallization

To a stirred solution of 1,2,3,4-tetra­hydro­quinoline (10 mmol) in 30 ml dry methyl­ene dichloride, tri­ethyl­amine (15 mmol) was added at 0 - 5°C. To this reaction mixture methane­sulfonyl chloride (12 mmol) in 10 ml dry di­chloro­methane was added drop wise. After 2h of stirring at 15 - 20°C, the reaction mixture was washed with 5% Na2CO3 and brine. The organic phase was dried over Na2SO4 and then it was concentrated on vacuum to yield titled compound as colourless solid. The crude product was recrystallized from a slovent mixture of ethyl acetate and hexane­(1:2) to yield colourless prisms of (I).

S5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93-0.99 Å. All H-atoms were refined with isotropic displacement parameters (set to 1.2-1.5 times of the U eq of the parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular packing of the title compound, dashed lines indicates the inversion dimers linked by pairs of C—H···O hydrogen bonds with R22(8) ring motifs.

Crystal data

C10H13NO2S F(000) = 224
Mr = 211.27 Prism
Triclinic, P1 Dx = 1.379 Mg m3
Hall symbol: -P 1 Melting point: 414 K
a = 5.5865 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.2195 (4) Å Cell parameters from 1844 reflections
c = 10.1924 (4) Å θ = 2.0–26.0°
α = 85.798 (2)° µ = 0.29 mm1
β = 84.686 (2)° T = 294 K
γ = 77.166 (2)° Prism, colourless
V = 508.89 (4) Å3 0.24 × 0.20 × 0.16 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 1973 independent reflections
Radiation source: fine-focus sealed tube 1844 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
Detector resolution: 1.09 pixels mm-1 θmax = 26.0°, θmin = 2.0°
phi and ω scans h = −6→6
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −11→11
Tmin = 0.933, Tmax = 0.955 l = −12→12
7417 measured reflections

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.1542P] where P = (Fo2 + 2Fc2)/3
1973 reflections (Δ/σ)max = 0.001
128 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.31 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.0188 (3) 0.52244 (15) 0.71208 (15) 0.0682 (4)
C1 0.3459 (3) 0.12140 (16) 0.73875 (15) 0.0323 (3)
C2 0.2249 (4) 0.0388 (2) 0.83231 (18) 0.0478 (4)
H2 0.0635 0.0778 0.8639 0.057*
C3 0.3448 (4) −0.1007 (2) 0.8780 (2) 0.0620 (6)
H3 0.2647 −0.1549 0.9413 0.074*
C4 0.5827 (4) −0.1601 (2) 0.8300 (2) 0.0593 (5)
H4 0.6643 −0.2534 0.8619 0.071*
C5 0.6980 (3) −0.0810 (2) 0.73512 (18) 0.0480 (4)
H5 0.8574 −0.1227 0.7022 0.058*
C6 0.5840 (3) 0.06025 (17) 0.68628 (15) 0.0359 (4)
C7 0.7133 (3) 0.1364 (2) 0.57329 (19) 0.0489 (4)
H7A 0.8788 0.1355 0.5955 0.059*
H7B 0.7273 0.0797 0.4954 0.059*
C8 0.5850 (4) 0.2949 (2) 0.54063 (19) 0.0537 (5)
H8A 0.6378 0.3244 0.4512 0.064*
H8B 0.6293 0.3604 0.6001 0.064*
C9 0.3091 (4) 0.3101 (2) 0.55315 (16) 0.0461 (4)
H9A 0.2296 0.4127 0.5318 0.055*
H9B 0.2648 0.2483 0.4903 0.055*
N1 0.2186 (2) 0.26547 (14) 0.68785 (12) 0.0343 (3)
C10 0.3540 (4) 0.4495 (2) 0.8543 (2) 0.0548 (5)
H10A 0.4427 0.4978 0.7856 0.082*
H10B 0.4619 0.3619 0.8890 0.082*
H10C 0.2931 0.5165 0.9235 0.082*
O2 −0.0312 (3) 0.33906 (15) 0.89749 (14) 0.0592 (4)
S1 0.10556 (7) 0.39877 (4) 0.78957 (4) 0.03662 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0777 (10) 0.0463 (8) 0.0683 (9) 0.0213 (7) −0.0239 (8) −0.0061 (7)
C1 0.0337 (7) 0.0307 (7) 0.0331 (7) −0.0068 (6) −0.0033 (6) −0.0056 (6)
C2 0.0479 (10) 0.0421 (9) 0.0499 (10) −0.0084 (8) 0.0107 (8) −0.0023 (7)
C3 0.0783 (15) 0.0417 (10) 0.0591 (12) −0.0096 (10) 0.0141 (10) 0.0071 (9)
C4 0.0768 (14) 0.0358 (9) 0.0578 (11) 0.0021 (9) −0.0054 (10) 0.0022 (8)
C5 0.0419 (9) 0.0425 (9) 0.0553 (10) 0.0027 (7) −0.0041 (8) −0.0117 (8)
C6 0.0336 (8) 0.0364 (8) 0.0390 (8) −0.0080 (6) −0.0024 (6) −0.0093 (6)
C7 0.0381 (9) 0.0537 (10) 0.0543 (10) −0.0125 (8) 0.0100 (8) −0.0084 (8)
C8 0.0626 (12) 0.0528 (11) 0.0455 (10) −0.0200 (9) 0.0140 (9) −0.0013 (8)
C9 0.0606 (11) 0.0445 (9) 0.0308 (8) −0.0067 (8) −0.0049 (7) 0.0003 (7)
N1 0.0350 (7) 0.0333 (7) 0.0336 (7) −0.0043 (5) −0.0030 (5) −0.0042 (5)
C10 0.0488 (10) 0.0674 (12) 0.0529 (11) −0.0158 (9) −0.0023 (8) −0.0261 (9)
O2 0.0526 (8) 0.0569 (8) 0.0645 (9) −0.0122 (6) 0.0261 (7) −0.0179 (7)
S1 0.0304 (2) 0.0346 (3) 0.0418 (3) 0.00108 (16) −0.00305 (16) −0.00688 (17)

Geometric parameters (Å, º)

O1—S1 1.4227 (13) C7—H7B 0.9700
C1—C2 1.396 (2) C8—C9 1.511 (3)
C1—C6 1.398 (2) C8—H8A 0.9700
C1—N1 1.4446 (18) C8—H8B 0.9700
C2—C3 1.381 (3) C9—N1 1.480 (2)
C2—H2 0.9300 C9—H9A 0.9700
C3—C4 1.379 (3) C9—H9B 0.9700
C3—H3 0.9300 N1—S1 1.6446 (13)
C4—C5 1.369 (3) C10—S1 1.7555 (18)
C4—H4 0.9300 C10—H10A 0.9600
C5—C6 1.394 (2) C10—H10B 0.9600
C5—H5 0.9300 C10—H10C 0.9600
C6—C7 1.515 (2) O2—S1 1.4279 (13)
C7—C8 1.505 (3) S1—O1 1.4227 (13)
C7—H7A 0.9700
C2—C1—C6 120.12 (15) C9—C8—H8A 109.6
C2—C1—N1 120.16 (14) C7—C8—H8B 109.6
C6—C1—N1 119.53 (13) C9—C8—H8B 109.6
C3—C2—C1 120.02 (17) H8A—C8—H8B 108.1
C3—C2—H2 120.0 N1—C9—C8 111.80 (14)
C1—C2—H2 120.0 N1—C9—H9A 109.3
C4—C3—C2 120.28 (18) C8—C9—H9A 109.3
C4—C3—H3 119.9 N1—C9—H9B 109.3
C2—C3—H3 119.9 C8—C9—H9B 109.3
C5—C4—C3 119.56 (18) H9A—C9—H9B 107.9
C5—C4—H4 120.2 C1—N1—C9 114.89 (12)
C3—C4—H4 120.2 C1—N1—S1 119.76 (10)
C4—C5—C6 122.06 (16) C9—N1—S1 117.41 (10)
C4—C5—H5 119.0 S1—C10—H10A 109.5
C6—C5—H5 119.0 S1—C10—H10B 109.5
C5—C6—C1 117.87 (15) H10A—C10—H10B 109.5
C5—C6—C7 119.39 (15) S1—C10—H10C 109.5
C1—C6—C7 122.61 (15) H10A—C10—H10C 109.5
C8—C7—C6 114.00 (14) H10B—C10—H10C 109.5
C8—C7—H7A 108.8 O1—S1—O2 118.38 (10)
C6—C7—H7A 108.8 O1—S1—N1 106.54 (8)
C8—C7—H7B 108.8 O2—S1—N1 108.22 (7)
C6—C7—H7B 108.8 O1—S1—C10 108.39 (10)
H7A—C7—H7B 107.6 O2—S1—C10 107.06 (9)
C7—C8—C9 110.45 (15) N1—S1—C10 107.85 (8)
C7—C8—H8A 109.6
C6—C1—C2—C3 3.1 (3) C6—C1—N1—C9 22.44 (19)
N1—C1—C2—C3 178.13 (17) C2—C1—N1—S1 59.22 (18)
C1—C2—C3—C4 −1.0 (3) C6—C1—N1—S1 −125.77 (13)
C2—C3—C4—C5 −1.1 (3) C8—C9—N1—C1 −51.15 (19)
C3—C4—C5—C6 1.2 (3) C8—C9—N1—S1 97.83 (15)
C4—C5—C6—C1 0.9 (3) C1—N1—S1—O1 −176.90 (12)
C4—C5—C6—C7 −174.89 (18) C9—N1—S1—O1 35.68 (15)
C2—C1—C6—C5 −3.1 (2) C1—N1—S1—O1 −176.90 (12)
N1—C1—C6—C5 −178.07 (13) C9—N1—S1—O1 35.68 (15)
C2—C1—C6—C7 172.62 (15) C1—N1—S1—O2 −48.59 (13)
N1—C1—C6—C7 −2.4 (2) C9—N1—S1—O2 163.98 (12)
C5—C6—C7—C8 −173.18 (16) C1—N1—S1—O2 −48.59 (13)
C1—C6—C7—C8 11.2 (2) C9—N1—S1—O2 163.98 (12)
C6—C7—C8—C9 −38.3 (2) C1—N1—S1—C10 66.91 (14)
C7—C8—C9—N1 58.9 (2) C9—N1—S1—C10 −80.52 (14)
C2—C1—N1—C9 −152.58 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10C···O2i 0.96 2.50 3.431 (2) 164

Symmetry code: (i) −x, −y+1, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7314).

References

  1. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chulakov, E. N., Levit, G. L., Tumashov, A. A., Sadretdinova, L. Sh. & Krasnov, V. P. (2012). Chem. Heterocycl. Compd, 48, 724–732.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Jeyaseelan, S., Asha, K. V., Venkateshappa, G., Raghavendrakumar, P. & Palakshamurthy, B. S. (2014). Acta Cryst. E70, o1176. [DOI] [PMC free article] [PubMed]
  5. Kadutskii, A. P., Kozlov, N. G., Frolova, L. L., Alekseev, I. N. & Kuchin, A. V. (2012). Chem. Nat. Compd, 48, 404–411.
  6. Katritsky, A. R., Rachwal, S. & Rachwal, B. (1996). Tetrahedron, 52, 15031–15070.
  7. Keith, J. M., Larrow, J. F. & Jacobsen, E. N. (2001). Adv. Synth. Catal. 343, 5–27.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014025353/hb7314sup1.cif

e-71-00o20-sup1.cif (252.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025353/hb7314Isup2.hkl

e-71-00o20-Isup2.hkl (108.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014025353/hb7314Isup3.cml

. DOI: 10.1107/S2056989014025353/hb7314fig1.tif

The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

. DOI: 10.1107/S2056989014025353/hb7314fig2.tif

The mol­ecular packing of the title compound, dashed lines indicates the inversion dimers linked by pairs of C—H⋯O hydrogen bonds with Inline graphic(8) ring motifs.

CCDC reference: 1034951

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES