Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):97–99. doi: 10.1107/S2056989014027182

Crystal structure of 4,4′-(ethane-1,2-di­yl)bis­(2,6-di­bromo­aniline)

Ines Hauptvogel a, Wilhelm Seichter a, Edwin Weber a,*
PMCID: PMC4331912  PMID: 25705462

The 4,4′-(ethane-1,2-di­yl)bis­(2,6-di­bromo­aniline) mol­ecule lies across an inversion center and hence the benzene rings are strictly planar. Mol­ecules are linked by N—H⋯N and weak N—H⋯Br hydrogen bonds, forming a two-dimensional network parallel to (101). Type II Br⋯Br inter­actions complete a three-dimensional supra­molecular network.

Keywords: crystal structure; 4,4′-(ethane-1,2-di­yl)bis­(2,6-di­bromo­aniline); framework structures

Abstract

In the title compound, C14H12Br4N2, the mol­ecule lies across an inversion center and hence the benzene rings are strictly coplanar. In the crystal, mol­ecules are linked by N—H⋯N and weak N—H⋯Br hydrogen bonds, forming a two-dimensional network parallel to (101). In addition, type II Br⋯Br inter­actions [3.625 (4) Å] complete a three-dimensional supra­molecular network.

Chemical context  

Spacer-type compounds are vital for the generation of a variety of framework structures including metal organic (MOF) (MacGillivray, 2010), hydrogen-bonded (HBN) (Elemans et al., 2009) or covalent organic (COF) (El-Kaden et al., 2007) network species. The title compound is an inter­mediate substance of a corresponding synthesis of a corresponding spacer molecule. Moreover, tecton-like mol­ecules having terminally attached inter­acting sites are inter­esting building blocks in the field of organic crystal engineering (Tiekink et al., 2010), in particular involving potentially competitive groups, in itself forming hydrogen bonds (Braga & Crepioni, 2004) or halogen contacts (Awwadi et al., 2006; Metrangolo & Resnati, 2008) by preference in the crystal state. Such a test case is given with the oligo­bromo­amino-containing title compound.graphic file with name e-71-00097-scheme1.jpg

Structural commentary  

The title mol­ecule lies across an inversion center and hence the benzene rings are strictly coplanar (Fig. 1). The conformation of the mol­ecular backbone agrees well with those found in the structure of 1,2-bi­phenyl­ethane (Harada & Ogawa, 2001) and a great number of its ring-substituted derivatives (Kahr et al., 1995; Moorthy et al., 2005). The Csp 3—Csp 3 and Csp 3—Csp 2 bond lengths of 1.535 (6) and 1.514 (4) Å are in the normal range.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level. Unlabeled atoms are related by the symmetry operator (−x + 1, −y + 2, −z).

Supra­molecular features  

The amino group hydrogen atoms take part in mol­ecular association (Table 1) by forming conventional N—H⋯N hydrogen bonds (Jeffrey, 1997, see Table 1) and weak N—H⋯Br contacts (Desiraju & Steiner, 1999) resulting in the formation of a layer structure parallel to (101) (Fig. 2). Inter­layer association is accomplished by type II, Br⋯Br contacts [3.625 (4) Å, θ1 = 109.7 (2), θ2 = 150.7 (2)°] (Awwadi et al., 2006; Metrangolo & Resnati, 2008).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1AN1i 0.88(2) 2.45(3) 3.206(4) 145(2)
N1H1BBr1i 0.88(2) 3.03(3) 3.521(4) 117(2)

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

Part of the crystal structure viewed along the b axis. N atoms are displayed as blue and Br atoms as violet circles. Hydrogen bonds and Br⋯Br contacts are shown as dashed lines.

Synthesis and crystallization  

In an imitation of a described procedure (Berger et al., 1998) preparation of the title compound was achieved by a bromination reaction of a solution of 4,4′-di­amino­biphenyl (10.0 g, 47.14 mmol) in glacial acetic acid (760 ml) using bromine (30.3 g, 0.19 mol, dissolved in 40 ml glacial acetic acid). After having stirred for 2 h at room temperature, water was added to the mixture. The raw product which precipitated was collected, washed with water and treated with boiling glacial acetic acid to yield 19.6 g (79%) of a greenish powder. Slow crystallization from toluene gave colourless needles of the title compound suitable for X-ray structural analysis. M.p. >593 K. IR (KBr) 3329, 3190, 3033, 2940, 2915, 2851, 1617, 1581, 1542, 1486, 1060, 892, 871. MS (EI) m/z: found – 527.5; calculated for C14H12N2Br4 – 527.87. Elemental analysis: found – C 31.53, H 2.34, N 5.59; calculated for C14H12N2Br4 – C 31.85, H 2.29, N 5.31. 4,4′-Di­amino­bibenzyl was purchased (Sigma–Aldrich). The melting point was measured on a hot-stage microscope (Rapido Dresden). IR and mass (EI–MS) spectra were performed using Nicolet 510 FTIR and Finnigan Mat 8200 instruments, respectively.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically (C—H = 0.93 Å for aromatic and C—H 0.97 Å for methyl­ene H) and refined using a riding model with U iso(H) = 1.2 U eq(C). The amino H atoms were located in a Fourier map and the N—H distances restrained to 0.89 (1) Å.

Table 2. Experimental details.

Crystal data
Chemical formula C14H12Br4N2
M r 527.86
Crystal system, space group Monoclinic, P21/n
Temperature (K) 153
a, b, c () 8.1219(4), 4.4962(2), 21.5327(9)
() 96.706(3)
V (3) 780.95(6)
Z 2
Radiation type Mo K
(mm1) 10.30
Crystal size (mm) 0.30 0.20 0.08
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2007)
T min, T max 0.148, 0.493
No. of measured, independent and observed [I > 2(I)] reflections 6211, 1356, 1213
R int 0.034
(sin /)max (1) 0.597
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.023, 0.057, 1.05
No. of reflections 1356
No. of parameters 99
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.52, 0.29

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014027182/lh5742sup1.cif

e-71-00097-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027182/lh5742Isup2.hkl

e-71-00097-Isup2.hkl (67KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027182/lh5742Isup3.cml

CCDC reference: 1038844

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft within the priority program ‘Porous Metal-Organic Frameworks’ (DFG-Project SPP 1362).

supplementary crystallographic information

Crystal data

C14H12Br4N2 F(000) = 500
Mr = 527.86 Dx = 2.245 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3117 reflections
a = 8.1219 (4) Å θ = 2.6–26.4°
b = 4.4962 (2) Å µ = 10.30 mm1
c = 21.5327 (9) Å T = 153 K
β = 96.706 (3)° Needle, colourless
V = 780.95 (6) Å3 0.30 × 0.20 × 0.08 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer 1356 independent reflections
Radiation source: fine-focus sealed tube 1213 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
φ and ω scans θmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −9→9
Tmin = 0.148, Tmax = 0.493 k = −5→4
6211 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0287P)2 + 0.4643P] where P = (Fo2 + 2Fc2)/3
1356 reflections (Δ/σ)max < 0.001
99 parameters Δρmax = 0.52 e Å3
2 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The distances of N—H bonds were restrained to a target value of 0.89(0.01) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.57978 (4) 0.36821 (8) 0.225361 (14) 0.03020 (13)
Br2 −0.06304 (4) 0.52607 (9) 0.094219 (15) 0.03690 (14)
N1 0.2009 (3) 0.2907 (7) 0.19806 (11) 0.0243 (6)
H1A 0.260 (3) 0.140 (5) 0.2143 (13) 0.020 (9)*
H1B 0.102 (2) 0.223 (8) 0.1841 (14) 0.033 (9)*
C1 0.3975 (4) 0.8813 (7) 0.07282 (13) 0.0216 (7)
C2 0.4981 (3) 0.7477 (7) 0.12150 (13) 0.0221 (7)
H2 0.6107 0.7920 0.1274 0.026*
C3 0.4334 (3) 0.5501 (7) 0.16131 (13) 0.0203 (7)
C4 0.2654 (3) 0.4736 (7) 0.15549 (12) 0.0190 (7)
C5 0.1679 (3) 0.6141 (7) 0.10623 (13) 0.0210 (7)
C6 0.2309 (4) 0.8108 (7) 0.06593 (13) 0.0222 (7)
H6 0.1604 0.8969 0.0338 0.027*
C7 0.4705 (4) 1.0862 (8) 0.02740 (14) 0.0279 (7)
H7A 0.5633 1.1936 0.0493 0.034*
H7B 0.3875 1.2306 0.0113 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02849 (19) 0.0311 (3) 0.02914 (19) 0.00445 (14) −0.00444 (13) −0.00097 (14)
Br2 0.02079 (19) 0.0507 (3) 0.0385 (2) −0.00335 (15) 0.00032 (14) 0.00005 (17)
N1 0.0284 (14) 0.0220 (17) 0.0237 (13) −0.0027 (12) 0.0073 (11) 0.0028 (13)
C1 0.0308 (16) 0.0158 (18) 0.0196 (14) 0.0001 (13) 0.0095 (12) −0.0052 (13)
C2 0.0205 (14) 0.0208 (18) 0.0264 (15) −0.0016 (13) 0.0089 (12) −0.0068 (15)
C3 0.0232 (15) 0.0212 (19) 0.0171 (13) 0.0019 (13) 0.0044 (12) −0.0044 (13)
C4 0.0234 (15) 0.0183 (18) 0.0165 (13) −0.0006 (13) 0.0070 (12) −0.0056 (13)
C5 0.0198 (14) 0.0220 (19) 0.0218 (14) 0.0003 (12) 0.0051 (11) −0.0061 (14)
C6 0.0311 (16) 0.0189 (19) 0.0172 (13) 0.0041 (13) 0.0050 (12) −0.0015 (13)
C7 0.0422 (19) 0.0171 (19) 0.0273 (16) −0.0008 (15) 0.0159 (14) −0.0017 (14)

Geometric parameters (Å, º)

Br1—C3 1.898 (3) C2—H2 0.9300
Br2—C5 1.905 (3) C3—C4 1.398 (4)
N1—C4 1.380 (4) C4—C5 1.398 (4)
N1—H1A 0.877 (10) C5—C6 1.378 (4)
N1—H1B 0.879 (10) C6—H6 0.9300
C1—C6 1.381 (4) C7—C7i 1.535 (6)
C1—C2 1.388 (4) C7—H7A 0.9700
C1—C7 1.514 (4) C7—H7B 0.9700
C2—C3 1.381 (4)
C4—N1—H1A 119.6 (19) C3—C4—C5 114.7 (3)
C4—N1—H1B 113 (2) C6—C5—C4 123.3 (3)
H1A—N1—H1B 108 (3) C6—C5—Br2 118.6 (2)
C6—C1—C2 117.7 (3) C4—C5—Br2 118.1 (2)
C6—C1—C7 121.5 (3) C5—C6—C1 120.7 (3)
C2—C1—C7 120.7 (3) C5—C6—H6 119.7
C3—C2—C1 120.9 (3) C1—C6—H6 119.7
C3—C2—H2 119.5 C1—C7—C7i 111.7 (4)
C1—C2—H2 119.5 C1—C7—H7A 109.3
C2—C3—C4 122.8 (3) C7i—C7—H7A 109.3
C2—C3—Br1 118.5 (2) C1—C7—H7B 109.3
C4—C3—Br1 118.8 (2) C7i—C7—H7B 109.3
N1—C4—C3 122.0 (3) H7A—C7—H7B 107.9
N1—C4—C5 123.2 (3)
C6—C1—C2—C3 0.4 (4) C3—C4—C5—C6 0.5 (4)
C7—C1—C2—C3 −177.0 (3) N1—C4—C5—Br2 −4.4 (4)
C1—C2—C3—C4 −0.2 (5) C3—C4—C5—Br2 −179.9 (2)
C1—C2—C3—Br1 178.3 (2) C4—C5—C6—C1 −0.4 (5)
C2—C3—C4—N1 −175.7 (3) Br2—C5—C6—C1 180.0 (2)
Br1—C3—C4—N1 5.8 (4) C2—C1—C6—C5 −0.1 (4)
C2—C3—C4—C5 −0.2 (4) C7—C1—C6—C5 177.3 (3)
Br1—C3—C4—C5 −178.7 (2) C6—C1—C7—C7i −89.9 (4)
N1—C4—C5—C6 176.0 (3) C2—C1—C7—C7i 87.4 (4)

Symmetry code: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N1ii 0.88 (2) 2.45 (3) 3.206 (4) 145 (2)
N1—H1B···Br1ii 0.88 (2) 3.03 (3) 3.521 (4) 117 (2)

Symmetry code: (ii) −x+1/2, y−1/2, −z+1/2.

References

  1. Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960. [DOI] [PubMed]
  2. Berger, R., Beckmann, R. & Reichelt, H. (1998). Ger. Offen. DE 19643769 A1 19980430.
  3. Braga, D. & Crepioni, F. (2004). In Encyclopedia of Supramolecular Chemistry, pp. 357–363. Boca Raton: CRC Press.
  4. Bruker (2007). APEX 2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press.
  6. Elemans, J. A. A. W., Lei, S. & De Feyter, S. (2009). Angew. Chem. Int. Ed. 48, 7298–7332. [DOI] [PubMed]
  7. El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortés, J. L., Côté, A. P., Taylor, R. E., O’Keeffe, M. & Yaghi, O. M. (2007). Science, 316, 268–272. [DOI] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Harada, J. & Ogawa, K. (2001). Struct. Chem. 12, 243–250.
  10. Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.
  11. Kahr, B., Mitchell, C. A., Chance, J. M., Clark, R. V., Gantzel, P., Baldridge, K. K. & Siegel, J. S. (1995). J. Am. Chem. Soc. 117, 4479–4482.
  12. MacGillivray, L. R. (2010). Editor. Metal–Organic Frameworks. Hoboken: Wiley.
  13. Metrangolo, P. & Resnati, G. (2008). In Halogen Bonding – Structure and Bonding, Vol. 126. Berlin-Heidelberg: Springer.
  14. Moorthy, J. N., Natarajan, R. & Venugopalan, R. (2005). J. Mol. Struct. 741, 107–114.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Tiekink, E. R. T., Vittal, J. J. & Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering. Chichester: Wiley.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014027182/lh5742sup1.cif

e-71-00097-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027182/lh5742Isup2.hkl

e-71-00097-Isup2.hkl (67KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027182/lh5742Isup3.cml

CCDC reference: 1038844

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES