Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o6–o7. doi: 10.1107/S2056989014025997

Crystal structure of 2-(1,3-dioxoindan-2-yl)iso­quinoline-1,3,4-trione

Raza Murad Ghalib a,*, C S Chidan Kumar b,c,, Rokiah Hashim d, Othman Sulaiman d, Hoong-Kun Fun e,b,*,§
PMCID: PMC4331915  PMID: 25705509

Abstract

In the title iso­quinoline-1,3,4-trione derivative, C18H9NO5, the five-membered ring of the indane fragment adopts an envelope conformation with the nitro­gen-substituted C atom being the flap. The planes of the indane benzene ring and the iso­quinoline-1,3,4-trione ring make a dihedral angle of 82.06 (6)°. In the crystal, mol­ecules are linked into chains extending along the bc plane via C—H⋯O hydrogen-bonding inter­actions, enclosing R 2 2(8) and R 2 2(10) loops. The chains are further connected by π–π stacking inter­ations, with centroid-to-centroid distances of 3.9050 (7) Å, forming layers parallel to the b axis.

Keywords: crystal structure; iso­quinoline-1,3,4-trione derivative; synthesis; hydrogen bonding; pharmacological properties

Related literature  

For the biological activity of iso­quinoline-1,3,4-triones, see: Chen et al. (2006); Du et al. (2008). For related iso­quinoline-1,3,4-trione structures, see: Yu et al. (2010); Huang et al. (2013). For synthetic applications of iso­quinoline-1,3,4-trione, see: Yu et al. (2010); Huang et al. (2011, 2013). For the synthesis of related compounds, see: Chen et al. (2006); Du et al. (2008); Ghalib et al. 2011; Schaber et al. 2004; Huang et al. (2013).graphic file with name e-71-000o6-scheme1.jpg

Experimental  

Crystal data  

  • C18H9NO5

  • M r = 319.26

  • Monoclinic, Inline graphic

  • a = 12.6080 (1) Å

  • b = 13.6849 (2) Å

  • c = 8.4467 (1) Å

  • β = 102.051 (1)°

  • V = 1425.27 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.93 mm−1

  • T = 100 K

  • 0.24 × 0.15 × 0.14 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.808, T max = 0.879

  • 9639 measured reflections

  • 2597 independent reflections

  • 2458 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.093

  • S = 1.04

  • 2597 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014025997/zl2607sup1.cif

e-71-000o6-sup1.cif (341.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025997/zl2607Isup2.hkl

e-71-000o6-Isup2.hkl (142.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014025997/zl2607Isup3.cml

. DOI: 10.1107/S2056989014025997/zl2607fig1.tif

The mol­ecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

A A x y z . DOI: 10.1107/S2056989014025997/zl2607fig2.tif

Crystal packing of the title compound, showing the C6–H6A⋯O2 and C7–H7A⋯O1 hydrogen bonding inter­actions (Symmetry codes: x, y, z + 1) as dashed lines incorporating Inline graphic(8) loops. Other H-atoms are omited for clarity.

x y z x y z x y z . DOI: 10.1107/S2056989014025997/zl2607fig3.tif

Crystal packing of the title compound, showing the C–H⋯O hydrogen bonding inter­actions (Symmetry codes: x, −y + Inline graphic, z − Inline graphic; −x, y + Inline graphic, −z − Inline graphic; −x, y − Inline graphic, −z − Inline graphic) as dashed lines incorporating Inline graphic(10) loops. Other H-atoms are omited for clarity.

. DOI: 10.1107/S2056989014025997/zl2607fig4.tif

Reaction scheme for the title compound.

CCDC reference: 1036387

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C6H6AO2i 0.95 2.54 3.4862(16) 171
C7H7AO1i 0.95 2.51 3.1397(15) 124
C10H10AO5ii 1.00 2.24 3.2022(15) 161
C13H13AO5iii 0.95 2.37 3.2852(16) 163
C16H16AO4iv 0.95 2.50 3.3596(17) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

RH and OS acknowledge Universiti Sains Malaysia (USM) for providing research facilities. CSCK thanks Universiti Sains Malaysia (USM) for a postdoctoral research fellowship. The authors extend their appreciation to The Deanship of Scientific Research at King Saud University for the research group project No. RGP VPP-207.

supplementary crystallographic information

S1. Chemical context

Urea has a complicated thermal behavior. It is thermally very liable to change. Thermal decomposition of urea under open reaction vessel conditions at temperatures in excess of 152 °C primarily gives cyanic acid (HNCO). HNCO on contact with additional urea in turn yields biuret which at a temperature of greater than 190 °C is liable to transform into cyanuric acid (Schaber et al., 2004). High-temperature thermal decomposition of cyanuric acid also gives cyanic acid again.

Heating of a mixture of ninhydrin and urea above the melting point of urea gives a mixture of 3a,8a-di­hydroxy-1,3,3a,8a-tetra­hydro- indeno­[1,2-d]imidazole-2,8-dione (3) and the title compound 2-(1,3-dioxoindan-2-yl)-iso­quinoline-1,3,4-trione (4) in about equal amounts, figure 4 (Ghalib et al. 2011). Compound 4 is most probably the product of reaction of nihyrin with cyanic acid. The formation of an iso­quinoline-1,3,4-triones is of inter­est as some of these compounds have been known for their potent anti­cancer activity (Chen et al., 2006; Du et al. 2008). In continuation to our inter­est in the chemical and pharmacological properties of ninhydrin derivatives (Ghalib et al., 2011), we synthesized the title compound 4 as a precursor for the synthesis of potential chemotherapeutic agents (Chen et al., 2006).

S2. Structural commentary

In the title compound (Fig. 1), the study of torsion angles, asymmetric parameters and least squares planes reveals that the indane (C10–C12/C17/C18) ring adopts an envelope conformation with the nitro­gen substituted C atom deviating by -0.104 (1) Å from the least-squares plane. The indane benzene ring (C12–C17) and the iso­quinoline-1,3,4-trione ring exhibit a dihedral angle of 82.06 (6)°, suggesting they are almost perpendicular to each other.

S3. Supra­molecular features

In the crystal structure, the molecules are connected into chains extending along the bc plane via inter­molecular C–H···O hydrogen bonds (Table 1) enclosing R22(8) and R22(10) loops (Fig. 2 & 3). In addition, π–π inter­actions (Cg2···Cg3 = 3.9050 (7) Å; symmetry code: 1-x, 1-y, 1-z) stack the molecules into layers parallel to the b axis, where Cg2 and Cg3 are the centroids of the pyridine-2,3,6-trione and the benzene (C3–C8) rings respectively.

S4. Synthesis and crystallization

A dry mixture of ninhydrin (1) (1.78 g) and urea (2) (0.60 g) in molar ratio 1:1 was heated for 15 minutes to 150 °C above the melting point of urea (130–135 °C). The reaction mixture was cooled and then fractionally crystallized with an alcohol-chloro­form (1:1) mixture to give colorless crystals of 3 as 3a,8a-di­hydroxy-1,3,3a,8a-tetra­hydro- indeno­[1,2-d]imidazole-2,8-dione (yield 40%, M.P.: 220 °C) (Ghalib et al. 2011) and brownish crystals of the title compound 4 as 2-(1,3-dioxo-indan-2-yl)-iso­quinoline-1,3,4-trione (yield 35%, m.p., 290 °C, Fig. 4).

S5. Refinement details

All the H atoms were positioned geometrically (C=H 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, showing the C6–H6A···O2 and C7–H7A···O1 hydrogen bonding interactions (Symmetry codes: x, y, z + 1) as dashed lines incorporating R22(8) loops. Other H-atoms are omited for clarity.

Fig. 3.

Fig. 3.

Crystal packing of the title compound, showing the C–H···O hydrogen bonding interactions (Symmetry codes: x, -y + 1/2, z - 1/2; -x, y + 1/2, -z - 1/2; -x, y - 1/2, -z - 1/2) as dashed lines incorporating R22(10) loops. Other H-atoms are omited for clarity.

Fig. 4.

Fig. 4.

Reaction scheme for the title compound.

Crystal data

C18H9NO5 F(000) = 656
Mr = 319.26 Dx = 1.488 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 12.6080 (1) Å Cell parameters from 6347 reflections
b = 13.6849 (2) Å θ = 6.3–71.7°
c = 8.4467 (1) Å µ = 0.93 mm1
β = 102.051 (1)° T = 100 K
V = 1425.27 (3) Å3 Block, orange
Z = 4 0.24 × 0.15 × 0.14 mm

Data collection

Bruker APEXII CCD diffractometer 2458 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
φ and ω scans θmax = 72.0°, θmin = 6.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→14
Tmin = 0.808, Tmax = 0.879 k = −16→16
9639 measured reflections l = −9→8
2597 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.5485P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2597 reflections Δρmax = 0.27 e Å3
217 parameters Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.36681 (7) 0.34686 (7) −0.36897 (11) 0.0226 (2)
O2 0.56844 (7) 0.37737 (7) −0.18918 (11) 0.0244 (2)
O3 0.22076 (7) 0.37449 (6) 0.07501 (11) 0.0212 (2)
O4 0.14773 (7) 0.52030 (7) −0.25876 (13) 0.0310 (3)
O5 0.14677 (7) 0.18880 (6) −0.12358 (10) 0.0208 (2)
N1 0.29330 (8) 0.35524 (7) −0.14517 (12) 0.0167 (2)
C1 0.37928 (9) 0.35678 (8) −0.22453 (15) 0.0171 (3)
C2 0.49378 (10) 0.37240 (8) −0.11979 (15) 0.0182 (3)
C3 0.50578 (10) 0.38012 (8) 0.05673 (15) 0.0173 (3)
C4 0.60836 (10) 0.39054 (9) 0.15659 (16) 0.0202 (3)
H4A 0.6710 0.3933 0.1108 0.024*
C5 0.61838 (10) 0.39680 (9) 0.32253 (16) 0.0219 (3)
H5A 0.6880 0.4043 0.3907 0.026*
C6 0.52631 (10) 0.39207 (9) 0.39026 (16) 0.0213 (3)
H6A 0.5339 0.3947 0.5045 0.026*
C7 0.42389 (10) 0.38360 (8) 0.29149 (15) 0.0191 (3)
H7A 0.3614 0.3817 0.3377 0.023*
C8 0.41329 (10) 0.37786 (8) 0.12429 (15) 0.0172 (3)
C9 0.30286 (10) 0.36955 (8) 0.02176 (15) 0.0172 (3)
C10 0.18389 (9) 0.34521 (9) −0.24087 (15) 0.0180 (3)
H10A 0.1894 0.3278 −0.3539 0.022*
C11 0.11456 (10) 0.43817 (9) −0.24898 (16) 0.0210 (3)
C12 0.00327 (10) 0.40620 (9) −0.24322 (16) 0.0215 (3)
C13 −0.09105 (10) 0.46146 (10) −0.26425 (18) 0.0276 (3)
H13A −0.0910 0.5291 −0.2893 0.033*
C14 −0.18531 (11) 0.41422 (10) −0.2473 (2) 0.0314 (3)
H14A −0.2510 0.4502 −0.2610 0.038*
C15 −0.18544 (11) 0.31468 (10) −0.21033 (19) 0.0315 (3)
H15A −0.2513 0.2842 −0.2000 0.038*
C16 −0.09097 (11) 0.25943 (10) −0.18845 (18) 0.0267 (3)
H16A −0.0910 0.1918 −0.1629 0.032*
C17 0.00336 (10) 0.30685 (9) −0.20540 (15) 0.0201 (3)
C18 0.11462 (9) 0.26700 (8) −0.18079 (14) 0.0173 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0203 (4) 0.0298 (5) 0.0183 (5) −0.0022 (3) 0.0056 (3) −0.0011 (4)
O2 0.0176 (4) 0.0350 (5) 0.0221 (5) −0.0004 (3) 0.0075 (4) 0.0005 (4)
O3 0.0169 (4) 0.0267 (5) 0.0214 (5) −0.0016 (3) 0.0072 (3) −0.0031 (3)
O4 0.0215 (5) 0.0205 (5) 0.0501 (7) −0.0025 (4) 0.0055 (4) 0.0081 (4)
O5 0.0218 (4) 0.0175 (4) 0.0219 (5) 0.0011 (3) 0.0019 (3) −0.0010 (3)
N1 0.0137 (5) 0.0192 (5) 0.0172 (5) −0.0005 (4) 0.0031 (4) −0.0007 (4)
C1 0.0180 (6) 0.0152 (6) 0.0189 (7) 0.0001 (4) 0.0055 (5) 0.0008 (4)
C2 0.0169 (6) 0.0160 (6) 0.0222 (7) 0.0003 (4) 0.0055 (5) 0.0006 (5)
C3 0.0180 (6) 0.0149 (5) 0.0190 (6) 0.0000 (4) 0.0043 (5) 0.0012 (4)
C4 0.0180 (6) 0.0196 (6) 0.0234 (7) −0.0004 (4) 0.0054 (5) 0.0014 (5)
C5 0.0185 (6) 0.0224 (6) 0.0226 (7) −0.0017 (5) −0.0004 (5) 0.0007 (5)
C6 0.0250 (6) 0.0207 (6) 0.0180 (6) −0.0017 (5) 0.0036 (5) −0.0004 (5)
C7 0.0206 (6) 0.0178 (6) 0.0202 (6) −0.0010 (4) 0.0069 (5) −0.0003 (4)
C8 0.0181 (6) 0.0138 (5) 0.0198 (6) −0.0005 (4) 0.0039 (5) 0.0002 (4)
C9 0.0180 (6) 0.0146 (5) 0.0198 (6) −0.0006 (4) 0.0060 (5) −0.0006 (4)
C10 0.0157 (6) 0.0203 (6) 0.0174 (6) −0.0002 (4) 0.0024 (4) 0.0001 (4)
C11 0.0177 (6) 0.0207 (6) 0.0237 (7) −0.0003 (5) 0.0022 (5) 0.0039 (5)
C12 0.0178 (6) 0.0202 (6) 0.0257 (7) −0.0012 (5) 0.0031 (5) 0.0000 (5)
C13 0.0203 (6) 0.0192 (6) 0.0423 (8) 0.0017 (5) 0.0042 (5) 0.0014 (6)
C14 0.0177 (6) 0.0261 (7) 0.0497 (9) 0.0029 (5) 0.0058 (6) −0.0034 (6)
C15 0.0188 (6) 0.0264 (7) 0.0508 (9) −0.0049 (5) 0.0107 (6) −0.0036 (6)
C16 0.0222 (6) 0.0189 (6) 0.0398 (8) −0.0028 (5) 0.0083 (5) −0.0010 (5)
C17 0.0183 (6) 0.0195 (6) 0.0225 (7) −0.0007 (5) 0.0039 (5) −0.0019 (5)
C18 0.0177 (6) 0.0180 (6) 0.0157 (6) −0.0019 (4) 0.0025 (4) −0.0035 (4)

Geometric parameters (Å, º)

O1—C1 1.2048 (15) C7—C8 1.3927 (18)
O2—C2 1.2102 (15) C7—H7A 0.9500
O3—C9 1.2136 (15) C8—C9 1.4825 (17)
O4—C11 1.2080 (16) C10—C18 1.5332 (16)
O5—C18 1.2088 (15) C10—C11 1.5370 (16)
N1—C1 1.3886 (15) C10—H10A 1.0000
N1—C9 1.4036 (16) C11—C12 1.4802 (17)
N1—C10 1.4525 (15) C12—C13 1.3890 (18)
C1—C2 1.5424 (16) C12—C17 1.3966 (17)
C2—C3 1.4707 (17) C13—C14 1.3863 (19)
C3—C4 1.3961 (17) C13—H13A 0.9500
C3—C8 1.4016 (17) C14—C15 1.398 (2)
C4—C5 1.3835 (18) C14—H14A 0.9500
C4—H4A 0.9500 C15—C16 1.3901 (19)
C5—C6 1.3987 (18) C15—H15A 0.9500
C5—H5A 0.9500 C16—C17 1.3883 (18)
C6—C7 1.3881 (18) C16—H16A 0.9500
C6—H6A 0.9500 C17—C18 1.4787 (16)
C1—N1—C9 124.81 (10) N1—C10—C18 114.97 (10)
C1—N1—C10 118.64 (10) N1—C10—C11 114.32 (10)
C9—N1—C10 116.40 (10) C18—C10—C11 103.57 (9)
O1—C1—N1 122.48 (11) N1—C10—H10A 107.9
O1—C1—C2 120.34 (11) C18—C10—H10A 107.9
N1—C1—C2 117.17 (10) C11—C10—H10A 107.9
O2—C2—C3 124.14 (11) O4—C11—C12 128.41 (12)
O2—C2—C1 117.35 (11) O4—C11—C10 124.84 (11)
C3—C2—C1 118.51 (10) C12—C11—C10 106.74 (10)
C4—C3—C8 120.06 (11) C13—C12—C17 121.27 (12)
C4—C3—C2 120.40 (11) C13—C12—C11 128.83 (12)
C8—C3—C2 119.54 (11) C17—C12—C11 109.86 (11)
C5—C4—C3 119.71 (11) C14—C13—C12 117.55 (12)
C5—C4—H4A 120.1 C14—C13—H13A 121.2
C3—C4—H4A 120.1 C12—C13—H13A 121.2
C4—C5—C6 120.23 (11) C13—C14—C15 121.24 (12)
C4—C5—H5A 119.9 C13—C14—H14A 119.4
C6—C5—H5A 119.9 C15—C14—H14A 119.4
C7—C6—C5 120.36 (12) C16—C15—C14 121.26 (12)
C7—C6—H6A 119.8 C16—C15—H15A 119.4
C5—C6—H6A 119.8 C14—C15—H15A 119.4
C6—C7—C8 119.63 (11) C17—C16—C15 117.44 (12)
C6—C7—H7A 120.2 C17—C16—H16A 121.3
C8—C7—H7A 120.2 C15—C16—H16A 121.3
C7—C8—C3 119.98 (11) C16—C17—C12 121.25 (11)
C7—C8—C9 118.45 (11) C16—C17—C18 128.40 (11)
C3—C8—C9 121.57 (11) C12—C17—C18 110.28 (10)
O3—C9—N1 118.63 (11) O5—C18—C17 127.71 (11)
O3—C9—C8 123.28 (11) O5—C18—C10 125.71 (11)
N1—C9—C8 118.09 (10) C17—C18—C10 106.57 (10)
C9—N1—C1—O1 −177.84 (11) C1—N1—C10—C18 131.20 (11)
C10—N1—C1—O1 −2.54 (16) C9—N1—C10—C18 −53.10 (13)
C9—N1—C1—C2 1.89 (16) C1—N1—C10—C11 −109.16 (12)
C10—N1—C1—C2 177.19 (9) C9—N1—C10—C11 66.53 (13)
O1—C1—C2—O2 2.38 (17) N1—C10—C11—O4 38.25 (18)
N1—C1—C2—O2 −177.36 (10) C18—C10—C11—O4 164.10 (13)
O1—C1—C2—C3 −177.50 (11) N1—C10—C11—C12 −142.00 (11)
N1—C1—C2—C3 2.76 (15) C18—C10—C11—C12 −16.15 (13)
O2—C2—C3—C4 −2.32 (18) O4—C11—C12—C13 7.3 (2)
C1—C2—C3—C4 177.55 (10) C10—C11—C12—C13 −172.42 (13)
O2—C2—C3—C8 177.08 (11) O4—C11—C12—C17 −170.35 (14)
C1—C2—C3—C8 −3.05 (16) C10—C11—C12—C17 9.92 (14)
C8—C3—C4—C5 1.19 (17) C17—C12—C13—C14 −0.4 (2)
C2—C3—C4—C5 −179.41 (11) C11—C12—C13—C14 −177.81 (14)
C3—C4—C5—C6 0.42 (18) C12—C13—C14—C15 0.0 (2)
C4—C5—C6—C7 −1.67 (19) C13—C14—C15—C16 0.3 (2)
C5—C6—C7—C8 1.27 (18) C14—C15—C16—C17 −0.3 (2)
C6—C7—C8—C3 0.35 (17) C15—C16—C17—C12 −0.1 (2)
C6—C7—C8—C9 −179.58 (10) C15—C16—C17—C18 176.66 (13)
C4—C3—C8—C7 −1.59 (17) C13—C12—C17—C16 0.4 (2)
C2—C3—C8—C7 179.01 (10) C11—C12—C17—C16 178.31 (12)
C4—C3—C8—C9 178.35 (10) C13—C12—C17—C18 −176.86 (12)
C2—C3—C8—C9 −1.06 (16) C11—C12—C17—C18 1.01 (15)
C1—N1—C9—O3 174.03 (10) C16—C17—C18—O5 −9.2 (2)
C10—N1—C9—O3 −1.36 (15) C12—C17—C18—O5 167.87 (12)
C1—N1—C9—C8 −5.98 (16) C16—C17—C18—C10 171.40 (13)
C10—N1—C9—C8 178.63 (10) C12—C17—C18—C10 −11.55 (14)
C7—C8—C9—O3 5.45 (17) N1—C10—C18—O5 −37.31 (17)
C3—C8—C9—O3 −174.48 (11) C11—C10—C18—O5 −162.74 (12)
C7—C8—C9—N1 −174.54 (10) N1—C10—C18—C17 142.12 (10)
C3—C8—C9—N1 5.52 (16) C11—C10—C18—C17 16.70 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6A···O2i 0.95 2.54 3.4862 (16) 171
C7—H7A···O1i 0.95 2.51 3.1397 (15) 124
C10—H10A···O5ii 1.00 2.24 3.2022 (15) 161
C13—H13A···O5iii 0.95 2.37 3.2852 (16) 163
C16—H16A···O4iv 0.95 2.50 3.3596 (17) 150

Symmetry codes: (i) x, y, z+1; (ii) x, −y+1/2, z−1/2; (iii) −x, y+1/2, −z−1/2; (iv) −x, y−1/2, −z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2607).

References

  1. Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, Y. H., Zhang, Y. H., Zhang, H. J., Liu, D. Z., Gu, M., Li, J. Y., Wu, F., Zhu, X. Z., Li, J. & Nan, F. J. (2006). J. Med. Chem. 49, 1613–1623. [DOI] [PubMed]
  3. Du, J. Q., Wu, J., Zhang, H. J., Zhang, Y. H., Qiu, B. Y., Wu, F., Chen, Y. H., Li, J. Y., Nan, F. J., Ding, J. P. & Li, J. (2008). J. Biol. Chem. 283, 30205–30215. [DOI] [PMC free article] [PubMed]
  4. Ghalib, R. M., Hashim, R., Mehdi, S. H., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o1525. [DOI] [PMC free article] [PubMed]
  5. Huang, C. M., Jiang, H., Wang, R. Z., Quah, C. K., Fun, H. K. & Zhang, Y. (2013). Org. Biomol. Chem. 11, 5023–5033. [DOI] [PubMed]
  6. Huang, C. M., Yu, H. T., Miao, Z. R., Zhou, J., Wang, S. A., Fun, H. K., Xu, J. H. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629–3631. [DOI] [PubMed]
  7. Schaber, P. M., Colson, J., Higgins, S., Thielen, D., Anspach, B. & Brauer, J. (2004). Thermochim. Acta, 424, 131–142.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Yu, H. T., Li, J. B., Kou, Z. F., Du, X. W., Wei, Y., Fun, H. K., Xu, J. H. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989014025997/zl2607sup1.cif

e-71-000o6-sup1.cif (341.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014025997/zl2607Isup2.hkl

e-71-000o6-Isup2.hkl (142.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014025997/zl2607Isup3.cml

. DOI: 10.1107/S2056989014025997/zl2607fig1.tif

The mol­ecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

A A x y z . DOI: 10.1107/S2056989014025997/zl2607fig2.tif

Crystal packing of the title compound, showing the C6–H6A⋯O2 and C7–H7A⋯O1 hydrogen bonding inter­actions (Symmetry codes: x, y, z + 1) as dashed lines incorporating Inline graphic(8) loops. Other H-atoms are omited for clarity.

x y z x y z x y z . DOI: 10.1107/S2056989014025997/zl2607fig3.tif

Crystal packing of the title compound, showing the C–H⋯O hydrogen bonding inter­actions (Symmetry codes: x, −y + Inline graphic, z − Inline graphic; −x, y + Inline graphic, −z − Inline graphic; −x, y − Inline graphic, −z − Inline graphic) as dashed lines incorporating Inline graphic(10) loops. Other H-atoms are omited for clarity.

. DOI: 10.1107/S2056989014025997/zl2607fig4.tif

Reaction scheme for the title compound.

CCDC reference: 1036387

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES