Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jan;70(1):98–102. doi: 10.1073/pnas.70.1.98

Stimulation of Mitochondrial Adenosine Diphosphate Uptake by Thyroid Hormones

Bernard M Babior 1,2,*,, Susan Creagan 1,2,, Sidney H Ingbar 1,2,§, Ruby S Kipnes 1,2,
PMCID: PMC433192  PMID: 4509666

Abstract

Thyroid hormone administered in vivo increased carrier-mediated (atractyloside-sensitive) ADP uptake by rat liver mitochondria. 3 Days after a single large dose of triiodothyronine (20 μg/100 g of body weight), mitochondrial uptake of ADP measured at 6° was 2.35 ± 0.17 nmol/min per mg of protein, compared with an uptake of 1.81 ± 0.19 nmol/min per mg of protein in mitochondria from untreated rats (P < 0.025). Cyanide (1.33 mM) had no effect on ADP uptake by mitochondria from either untreated or triiodothyronine-treated animals. Uptake of ADP by mitochondria from thyroidectomized rats treated with thyroxine for 7 days was 2.89 ± 0.40 nmol/min per mg in mitochondria from thyrotoxic rats (20 μg of thyroxine per 100 g per day) and 1.98 ± 0.22 nmol/min per mg in mitochondria from euthyroid rats (2 μg of thyroxine per 100 g per day) (P < 0.025). Mitochondria from both untreated and thyroid hormone-treated rats displayed a highly significant linear correlation between ADP uptake and ADP-dependent (i.e., state 3 minus state 4) oxygen consumption. There was, however, no difference in respiratory control ratios between mitochondria from euthyroid and thyrotoxic animals. Administration of dinitrophenol (2 mg/100 g) also stimulated carrier-mediated ADP uptake, but respiratory control of mitochondria from dinitrophenol-treated animals was virtually abolished. Triiodothyronine in vitro, at concentrations of 100 and 0.1 nM, appeared to inhibit rather than stimulate the uptake of mitochondrial ADP. The relationship between these observations and the clinical manifestations of thyrotoxicosis is discussed from the point of view of the possible effects of increased mitochondrial ADP transport on oxidative phosphorylation and adenosyl nucleotide metabolism.

Keywords: mitochondrial O2 uptake; mitochondrial respiratory control; atractyloside; 2,4-dinitrophenol

Full text

PDF
98

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson D. E., Fall L. Adenosine triphosphate conservation in biosynthetic regulation. Escherichia coli phosphoribosylpyrophosphate synthase. J Biol Chem. 1967 Jul 10;242(13):3241–3242. [PubMed] [Google Scholar]
  2. Atkinson D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. doi: 10.1021/bi00851a033. [DOI] [PubMed] [Google Scholar]
  3. Bianchetti A., Pugliatti C., Jori A. On the hyperthermia induced by 2,4-dinitrophenol. Med Pharmacol Exp Int J Exp Med. 1967;17(5):401–408. doi: 10.1159/000137108. [DOI] [PubMed] [Google Scholar]
  4. Bronk J. R. Thyroid hormone: effects on electron transport. Science. 1966 Aug 5;153(3736):638–639. doi: 10.1126/science.153.3736.638. [DOI] [PubMed] [Google Scholar]
  5. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  6. HOCH F. L. Biochemical actions of thyroid hormones. Physiol Rev. 1962 Oct;42:605–673. doi: 10.1152/physrev.1962.42.4.605. [DOI] [PubMed] [Google Scholar]
  7. HOCH F. L. Thyrotoxicosis as a disease of mitochondria. N Engl J Med. 1962 Mar 1;266:446–contd. doi: 10.1056/NEJM196203012660907. [DOI] [PubMed] [Google Scholar]
  8. Ismail-Beigi F., Edelman I. S. The mechanism of the calorigenic action of thyroid hormone. Stimulation of Na plus + K plus-activated adenosinetriphosphatase activity. J Gen Physiol. 1971 Jun;57(6):710–722. doi: 10.1085/jgp.57.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Izmail-Beigi F., Edelman I. S. Mechanism of thyroid calorigenesis: role of active sodium transport. Proc Natl Acad Sci U S A. 1970 Oct;67(2):1071–1078. doi: 10.1073/pnas.67.2.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klingenberg M. Metabolite transport in mitochondria: an example for intracellular membrane function. Essays Biochem. 1970;6:119–159. [PubMed] [Google Scholar]
  11. Klingenberg M., Pfaff E. Metabolic control in mitochondria by adenine nucleotide translocation. Biochem Soc Symp. 1968;27:105–122. [PubMed] [Google Scholar]
  12. LEE Y. P., LARDY H. A. INFLUENCE OF THYROID HORMONES ON L-ALPHA-GLYCEROPHOSPHATE DEHYDROGENASES AND OTHER DEHYDROGENASES IN VARIOUS ORGANS OF THE RAT. J Biol Chem. 1965 Mar;240:1427–1436. [PubMed] [Google Scholar]
  13. Pfaff E., Klingenberg M. Adenine nucleotide translocation of mitochondria. 1. Specificity and control. Eur J Biochem. 1968 Oct 17;6(1):66–79. doi: 10.1111/j.1432-1033.1968.tb00420.x. [DOI] [PubMed] [Google Scholar]
  14. Racker E. The two faces of the inner mitochondrial membrane. Essays Biochem. 1970;6:1–22. [PubMed] [Google Scholar]
  15. SHAW W. V., LANNON T. J., TAPLEY D. F. The effect of analogues of thyroxine and 2, 4-dinitrophenol on the swelling of mitochondria. Biochim Biophys Acta. 1959 Dec;36:499–504. doi: 10.1016/0006-3002(59)90191-x. [DOI] [PubMed] [Google Scholar]
  16. Stocker W. W., Samaha F. J., DeGroot L. J. Coupled oxidative phosphorylation in muscle of thyrotoxic patients. Am J Med. 1968 Jun;44(6):900–909. doi: 10.1016/0002-9343(68)90090-9. [DOI] [PubMed] [Google Scholar]
  17. TATA J. R., ERNSTER L., LINDBERG O., ARRHENIUS E., PEDERSEN S., HEDMAN R. The action of thyroid hormones at the cell level. Biochem J. 1963 Mar;86:408–428. doi: 10.1042/bj0860408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Winkler H. H., Bygrave F. L., Lehninger A. L. Characterization of the atractyloside-sensitive adenine nucleotide transport system in rat liver mitochondria. J Biol Chem. 1968 Jan 10;243(1):20–28. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES