Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):65–68. doi: 10.1107/S2056989014026826

Crystal structure of an eight-coordinate terbium(III) ion chelated by N,N′-bis­(2-hy­droxy­benz­yl)-N,N′-bis­(pyridin-2-ylmeth­yl)ethyl­enedi­amine (bbpen2−) and nitrate

Thaiane Gregório a, André Luis Rüdiger a, Giovana G Nunes a, Jaísa F Soares a, David L Hughes b,*
PMCID: PMC4331920  PMID: 25705453

The reaction of terbium(III) nitrate penta­hydrate in aceto­nitrile with N,N′-bis­(2-hy­droxy­benz­yl)-N,N′-bis­(pyridin-2-ylmeth­yl)ethyl­enedi­amine (H2bbpen), previously deprotonated with tri­ethyl­amine, produced the mononuclear compound [Tb(Cbbpen)(NO3)]. The mol­ecule lies on a twofold rotation axis and the TbIII ion is eight-coordinate with a slightly distorted dodeca­hedral coordination geometry.

Keywords: crystal structure; lanthanide; terbium(III); N,N′-bis(2-hy­droxy­benz­yl)-N,N′-bis­(pyridin-2-ylmeth­yl)ethyl­enedi­amine; mononuclear; dodeca­hedral.

Abstract

The reaction of terbium(III) nitrate penta­hydrate in aceto­nitrile with N,N′-bis­(2-hy­droxy­benz­yl)-N,N′-bis­(pyridin-2-ylmeth­yl)ethyl­enedi­amine (H2bbpen), previously deprotonated with tri­ethyl­amine, produced the mononuclear compound [N,N′-bis­(2-oxidobenzyl-κO)-N,N′-bis­(pyridin-2-ylmethyl-κN)ethylenedi­amine-κ2 N,N′](nitrato-κ2 O,O′)terbium(III), [Tb(C28H28N4O2)(NO3)]. The mol­ecule lies on a twofold rotation axis and the TbIII ion is eight-coordinate with a slightly distorted dodeca­hedral coordination geometry. In the symmetry-unique part of the mol­ecule, the pyridine and benzene rings are both essentially planar and form a dihedral angle of 61.42 (7)°. In the mol­ecular structure, the N4O4 coordination environment is defined by the hexa­dentate bbpen ligand and the bidentate nitrate anion. In the crystal, a weak C—H⋯O hydrogen bond links mol­ecules into a two-dimensional network parallel to (001).

Chemical context  

As far as biological and biomedical applications are concerned, complexes of polydentate ligands with a range of metal ions in different oxidation states have been synthesized to model active sites of metalloproteins and to shed light on the consequences of heavy-metal chelation in living organisms, among many other applications (Colotti et al., 2013; Nurchi et al., 2013; Sears, 2013; Happe & Hemschemeier, 2014). Pyridyl and phenolate groups have been incorporated into these ligands because of their potential to mimic the coordination environments provided by the amino acids histidine and tyrosine, respectively (Hancock, 2013; Lenze et al., 2013). In this context, the heterotrifunctional Lewis base N,N′-bis­(2-hy­droxy­benz­yl)-N,N′-bis­(pyridin-2-ylmeth­yl)ethyl­enedi­amine (H2bbpen) is suitable for the coordination of a range of p-, d- and f-block ions because of its versatile soft donor atoms in the pyridine rings and hard donors in the amine and phenolate groups (Neves et al., 1992; Schwingel et al., 1996). Electrochemical studies of the mononuclear [Mn(bbpen)]PF6, for example, revealed that this complex mimics some of the redox features of the photosystem II (PSII) (Neves et al., 1992). Complexes of bbpen2– with vanadium(III) and oxido-vanadium(IV) have been obtained as models of the vanadium-modified transferrin, the probable vanadium-transporting protein in higher organisms (Neves et al., 1991, 1993). Iron complexes of bbpen2– modified with electron-donating and -withdrawing groups (Me, Br, NO2), in turn, have been synthesized to provide detailed chemical information on the enzymatic activity of iron-tyrosinate proteins (Lanznaster et al., 2006). This ligand has also been employed to prepare lanthanide(III), gallium(III) and indium(III) complexes for medicinal applications such as the development of new contrast agents for magnetic resonance imaging, MRI (Wong et al., 1995, 1996; Setyawati et al., 2000).graphic file with name e-71-00065-scheme1.jpg

More recently, lanthanide(III) chelate complexes have also attracted attention in the field of mol­ecular magnetism due to their highly significant single-ion magnetic anisotropy (Sessoli & Powell, 2009; Luzon & Sessoli, 2012). Accordingly, a number of examples of mononuclear lanthanide complexes that exhibit single-mol­ecule magnet (SMM) behaviour have been reported (Rinehart & Long, 2011; Chilton et al., 2013; Ungur et al., 2014; Zhang et al., 2014). Our inter­est in the class of lanthanide complexes in which two coordination sites are occupied by relatively labile ligands, as in the title complex, comes from the possibility of using them as starting materials for the preparation of heteronuclear aggregates of d- and f-block ions that present SMM features. In this case, the replacement of the labile ligands by specific bidentate metallo­ligands can give rise to heteronuclear metal aggregates in which desirable ferromagnetic or ferrimagnetic exchange inter­actions are favoured (Totaro et al., 2013; Westrup et al., 2014).

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The TbIII ion is eight-coordinate with a dodeca­hedral array of N and O atoms (Table 1); the four N atoms of the O2N4-ligand (bbpen) form one plane, the four O atoms the other, with the phenolic O atoms in the B-sites (roughly equatorial) and the nitrate group O atoms in the A-sites (above and below the equatorial plane). The normals to the two planes are essentially perpendicular. A twofold rotation axis passes through O3 and N1 of the nitrate group, the terbium(III) atom and the mid-point of the C7—C7i bond [symmetry code (i) 1 − x, y, −z + Inline graphic]. In the symmetry-unique part of the mol­ecule, the pyridine and benzene rings are both essentially planar and form a dihedral angle of 61.42 (7)°. The eightfold coordination pattern might also be described as a distorted bicapped trigonal prism with O1 and N2 as the capping atoms. However, this ignores the symmetry of the coordination, e.g. O1 and O1i would occupy different sites in the coordination polyhedron. Also, some of the rectangular faces of the prism are difficult to identify. In contrast, the dodeca­hedral pattern incorporates the twofold symmetry and the distortion from the ideal geometry is minimal.

Figure 1.

Figure 1

View of a mol­ecule of [Tb(bbpen)(NO3)], indicating the atom-numbering scheme. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) −x + 1, y, −z + Inline graphic].

Table 1. Selected bond lengths ().

Tb1O1 2.1947(13) Tb1N3 2.5558(16)
Tb1O2 2.4764(15) Tb1N1 2.891(2)
Tb1N2 2.5521(17)    

Supra­molecular features  

In the crystal, a weak C—H⋯O hydrogen bond (Table 2) links mol­ecules into a two-dimensional network parallel to (001), Fig. 2.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C8H8BO3ii 0.99 2.37 3.338(3) 166

Symmetry code: (ii) Inline graphic.

Figure 2.

Figure 2

A sheet of mol­ecules, lying in a plane normal to the c axis, linked through short ‘weak hydrogen bonds’, as C8—H8B⋯O3ii [symmetry codes: (ii) x + Inline graphic, y + Inline graphic, z; (iii) x − Inline graphic, y − Inline graphic, z].

Database survey  

Some examples of complexes with bbpen2– and related ligands with d-block metal ions appear in the literature (Xu et al., 2000; dos Anjos et al., 2006; Lanznaster et al., 2006; Golchoubian & Gholamnezhad, 2009; Thomas et al., 2010) as well as p-block metal(III) compounds (Wong et al., 1995, 1996) and related yttrium(III) and lanthanide(III) complexes (Setyawati et al., 2000; Yamada et al., 2010).

Synthesis and crystallization  

Tb(NO3)3·5H2O, ethyl­enedi­amine, salicyl­aldehyde, sodium borohydride, 2-picolyl-chloride hydro­chloride and tri­ethyl­amine were purchased from Aldrich and used without purification. N,N′-bis­(salicyl­idene)ethyl­enedi­amine (H2salen) (Diehl et al., 2007), N,N′-bis­(2-hy­droxy­benz­yl)ethyl­enedi­amine (H2bben) and N,N′-bis­(2-hy­droxy­benz­yl)-N,N′-bis(2-pyridyl­meth­yl)ethyl­enedi­amine (H2bbpen) (Neves et al., 1992) were prepared as described in the literature. The preparation of the title complex was carried out under N2(g) using standard Schlenk and glove-box techniques. Aceto­nitrile was dried with CaH2 and distilled prior to use. A solution containing tri­ethyl­amine (300 µl, 2.15 mmol) in aceto­nitrile (10 ml) was added to a suspension of H2bbpen (0.454 g, 1.00 mmol) in aceto­nitrile (25 ml) under stirring, giving a clear light-orange solution. After 15 min, this solution was added to a colourless solution of Tb(NO3)3·5H2O (0.434 g, 0.998 mmol) in aceto­nitrile (25 ml). A pale-yellow solution was obtained, which gave a 65% yield of the solid of the title compound upon cooling at 253 K for 2–3 days. Recrystallization of this solid by vapor diffusion of di­meth­oxy­ethane into the reaction mixture gave pale-pink crystals after two weeks at room temperature. These crystals are air-stable and insoluble in all common organic solvents.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were included in idealized positions (with C—H distances set at 0.97 and 0.93 Å for the methyl­ene and trigonal–planar groups, respectively) and their U iso values were set to ride (1.2×) on the U eq values of the parent carbon atoms.

Table 3. Experimental details.

Crystal data
Chemical formula [Tb(C28H28N4O2)(NO3)]
M r 673.47
Crystal system, space group Orthorhombic, C2221
Temperature (K) 100
a, b, c () 8.5947(6), 18.2401(17), 16.9272(13)
V (3) 2653.6(4)
Z 4
Radiation type Mo K
(mm1) 2.71
Crystal size (mm) 0.43 0.20 0.20
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100 CMOS
Absorption correction Multi-scan (SADABS2014/2; Bruker, 2014)
T min, T max 0.581, 0.746
No. of measured, independent and observed [I > 2(I)] reflections 75009, 3320, 3289
R int 0.020
(sin /)max (1) 0.668
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.010, 0.027, 1.15
No. of reflections 3320
No. of parameters 178
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.87, 0.30
Absolute structure Flack x determined using 1431 quotients [(I +)(I )]/[(I +)+(I )] (Parsons Flack, 2004)
Absolute structure parameter 0.0107(19)

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXS97 and SHELXL2013 (Sheldrick, 2008), ORTEPII (Johnson, 1976), ORTEP-3 for Windows and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026826/lh5741sup1.cif

e-71-00065-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026826/lh5741Isup2.hkl

e-71-00065-Isup2.hkl (182.4KB, hkl)

CCDC reference: 1037922

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Brazilian agencies CNPq (grant No. 307592/2012–0) and CAPES (grant PVE A099/2013) is gratefully acknowledged. The authors also thank CNPq, CAPES and Fundação Araucária (Brazil) for fellowships.

supplementary crystallographic information

Crystal data

[Tb(C28H28N4O2)(NO3)] Dx = 1.686 Mg m3
Mr = 673.47 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, C2221 Cell parameters from 9558 reflections
a = 8.5947 (6) Å θ = 2.9–28.3°
b = 18.2401 (17) Å µ = 2.71 mm1
c = 16.9272 (13) Å T = 100 K
V = 2653.6 (4) Å3 Prism, pale pink
Z = 4 0.43 × 0.20 × 0.20 mm
F(000) = 1344

Data collection

Bruker D8 Venture/Photon 100 CMOS diffractometer 3320 independent reflections
Radiation source: fine-focus sealed tube 3289 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
Detector resolution: 10.4167 pixels mm-1 θmax = 28.4°, θmin = 2.9°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS2014/2; Bruker, 2014) k = −24→24
Tmin = 0.581, Tmax = 0.746 l = −22→22
75009 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.010 w = 1/[σ2(Fo2) + (0.0139P)2 + 1.0428P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.027 (Δ/σ)max = 0.004
S = 1.15 Δρmax = 0.87 e Å3
3320 reflections Δρmin = −0.30 e Å3
178 parameters Absolute structure: Flack x determined using 1431 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
0 restraints Absolute structure parameter: −0.0107 (19)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Tb1 0.5000 0.51826 (2) 0.2500 0.01172 (4)
O1 0.59854 (16) 0.54526 (8) 0.13398 (8) 0.0167 (3)
O2 0.4357 (2) 0.39605 (9) 0.30473 (10) 0.0312 (4)
O3 0.5000 0.29285 (11) 0.2500 0.0586 (9)
N1 0.5000 0.35974 (11) 0.2500 0.0293 (6)
N2 0.7540 (2) 0.49068 (9) 0.32221 (10) 0.0183 (3)
N3 0.66305 (19) 0.63257 (8) 0.27777 (9) 0.0130 (3)
C1 0.8272 (3) 0.42575 (12) 0.32538 (14) 0.0249 (4)
H1 0.7809 0.3851 0.2993 0.030*
C2 0.9672 (2) 0.41490 (13) 0.36483 (14) 0.0275 (5)
H2 1.0155 0.3681 0.3656 0.033*
C3 1.0342 (2) 0.47389 (13) 0.40282 (14) 0.0253 (5)
H3 1.1304 0.4685 0.4298 0.030*
C4 0.9590 (2) 0.54124 (13) 0.40111 (12) 0.0203 (4)
H4 1.0022 0.5823 0.4278 0.024*
C5 0.8200 (2) 0.54783 (11) 0.35990 (10) 0.0151 (3)
C6 0.7349 (2) 0.62034 (12) 0.35643 (12) 0.0160 (4)
H6A 0.6528 0.6212 0.3975 0.019*
H6B 0.8088 0.6606 0.3679 0.019*
C7 0.5652 (2) 0.69987 (10) 0.28069 (12) 0.0156 (3)
H7A 0.6323 0.7432 0.2719 0.019*
H7B 0.5190 0.7043 0.3340 0.019*
C8 0.7933 (2) 0.64051 (11) 0.21953 (12) 0.0162 (4)
H8A 0.8566 0.5952 0.2212 0.019*
H8B 0.8607 0.6814 0.2372 0.019*
C9 0.7479 (2) 0.65450 (12) 0.13510 (12) 0.0161 (4)
C10 0.6559 (2) 0.60220 (10) 0.09514 (11) 0.0155 (4)
C11 0.6273 (2) 0.61288 (12) 0.01400 (12) 0.0188 (4)
H11 0.5663 0.5782 −0.0142 0.023*
C12 0.6873 (3) 0.67359 (13) −0.02515 (12) 0.0232 (4)
H12 0.6664 0.6801 −0.0798 0.028*
C13 0.7777 (3) 0.72492 (13) 0.01476 (14) 0.0251 (4)
H13 0.8186 0.7663 −0.0123 0.030*
C14 0.8073 (2) 0.71496 (11) 0.09491 (12) 0.0199 (4)
H14 0.8688 0.7498 0.1225 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Tb1 0.01260 (5) 0.01031 (5) 0.01225 (5) 0.000 0.00008 (7) 0.000
O1 0.0177 (6) 0.0180 (6) 0.0145 (6) −0.0021 (5) 0.0023 (5) −0.0009 (5)
O2 0.0439 (9) 0.0209 (7) 0.0287 (8) −0.0086 (7) −0.0077 (7) 0.0083 (6)
O3 0.096 (2) 0.0096 (8) 0.0704 (19) 0.000 −0.046 (3) 0.000
N1 0.0418 (14) 0.0119 (9) 0.0343 (13) 0.000 −0.028 (2) 0.000
N2 0.0170 (8) 0.0191 (8) 0.0188 (8) 0.0028 (7) −0.0021 (6) 0.0002 (6)
N3 0.0124 (7) 0.0136 (7) 0.0128 (6) 0.0003 (6) −0.0002 (5) 0.0006 (5)
C1 0.0244 (10) 0.0208 (10) 0.0294 (11) 0.0046 (8) −0.0059 (9) −0.0027 (8)
C2 0.0250 (14) 0.0275 (10) 0.0298 (10) 0.0106 (8) −0.0037 (8) 0.0042 (8)
C3 0.0180 (13) 0.0364 (11) 0.0214 (9) 0.0023 (8) −0.0036 (7) 0.0102 (8)
C4 0.0176 (11) 0.0282 (10) 0.0153 (8) −0.0033 (7) −0.0028 (6) 0.0061 (8)
C5 0.0147 (8) 0.0196 (9) 0.0110 (8) 0.0001 (7) 0.0013 (6) 0.0032 (7)
C6 0.0162 (9) 0.0181 (9) 0.0138 (9) −0.0009 (8) −0.0022 (7) −0.0010 (8)
C7 0.0161 (8) 0.0110 (8) 0.0198 (8) −0.0006 (7) −0.0002 (7) −0.0012 (7)
C8 0.0124 (8) 0.0210 (9) 0.0153 (8) −0.0023 (7) 0.0007 (7) 0.0021 (7)
C9 0.0136 (9) 0.0209 (10) 0.0139 (9) 0.0017 (8) 0.0009 (7) 0.0012 (8)
C10 0.0130 (8) 0.0175 (9) 0.0158 (8) 0.0028 (7) 0.0024 (7) 0.0001 (7)
C11 0.0181 (9) 0.0231 (10) 0.0153 (9) 0.0024 (8) 0.0000 (7) −0.0021 (8)
C12 0.0266 (11) 0.0286 (11) 0.0142 (9) 0.0029 (9) −0.0004 (8) 0.0042 (8)
C13 0.0303 (11) 0.0238 (10) 0.0210 (11) −0.0032 (9) 0.0013 (9) 0.0080 (8)
C14 0.0196 (9) 0.0208 (9) 0.0194 (10) −0.0012 (8) 0.0002 (8) 0.0022 (8)

Geometric parameters (Å, º)

Tb1—O1i 2.1947 (13) C3—H3 0.9500
Tb1—O1 2.1947 (13) C4—C5 1.389 (3)
Tb1—O2i 2.4764 (15) C4—H4 0.9500
Tb1—O2 2.4764 (15) C5—C6 1.513 (3)
Tb1—N2i 2.5521 (17) C6—H6A 0.9900
Tb1—N2 2.5521 (17) C6—H6B 0.9900
Tb1—N3i 2.5558 (16) C7—C7i 1.529 (4)
Tb1—N3 2.5558 (16) C7—H7A 0.9900
Tb1—N1 2.891 (2) C7—H7B 0.9900
O1—C10 1.324 (2) C8—C9 1.503 (3)
O2—N1 1.266 (2) C8—H8A 0.9900
O3—N1 1.220 (3) C8—H8B 0.9900
N1—O2i 1.266 (2) C9—C14 1.393 (3)
N2—C1 1.342 (3) C9—C10 1.412 (3)
N2—C5 1.347 (3) C10—C11 1.409 (3)
N3—C6 1.485 (2) C11—C12 1.390 (3)
N3—C7 1.489 (2) C11—H11 0.9500
N3—C8 1.498 (2) C12—C13 1.391 (3)
C1—C2 1.391 (3) C12—H12 0.9500
C1—H1 0.9500 C13—C14 1.392 (3)
C2—C3 1.380 (3) C13—H13 0.9500
C2—H2 0.9500 C14—H14 0.9500
C3—C4 1.388 (3)
O1i—Tb1—O1 154.07 (7) C8—N3—Tb1 111.56 (11)
O1i—Tb1—O2i 128.52 (6) N2—C1—C2 123.4 (2)
O1—Tb1—O2i 77.36 (6) N2—C1—H1 118.3
O1i—Tb1—O2 77.36 (6) C2—C1—H1 118.3
O1—Tb1—O2 128.52 (6) C3—C2—C1 118.3 (2)
O2i—Tb1—O2 51.64 (9) C3—C2—H2 120.9
O1i—Tb1—N2i 98.20 (5) C1—C2—H2 120.9
O1—Tb1—N2i 86.89 (5) C2—C3—C4 119.11 (19)
O2i—Tb1—N2i 80.45 (6) C2—C3—H3 120.4
O2—Tb1—N2i 79.10 (6) C4—C3—H3 120.4
O1i—Tb1—N2 86.89 (5) C3—C4—C5 119.2 (2)
O1—Tb1—N2 98.20 (5) C3—C4—H4 120.4
O2i—Tb1—N2 79.10 (6) C5—C4—H4 120.4
O2—Tb1—N2 80.45 (6) N2—C5—C4 122.21 (19)
N2i—Tb1—N2 157.26 (8) N2—C5—C6 117.05 (16)
O1i—Tb1—N3i 76.70 (5) C4—C5—C6 120.74 (19)
O1—Tb1—N3i 82.18 (5) N3—C6—C5 111.54 (16)
O2i—Tb1—N3i 141.99 (5) N3—C6—H6A 109.3
O2—Tb1—N3i 132.91 (6) C5—C6—H6A 109.3
N2i—Tb1—N3i 66.65 (5) N3—C6—H6B 109.3
N2—Tb1—N3i 135.88 (5) C5—C6—H6B 109.3
O1i—Tb1—N3 82.18 (5) H6A—C6—H6B 108.0
O1—Tb1—N3 76.70 (5) N3—C7—C7i 113.05 (13)
O2i—Tb1—N3 132.91 (6) N3—C7—H7A 109.0
O2—Tb1—N3 141.99 (5) C7i—C7—H7A 109.0
N2i—Tb1—N3 135.88 (5) N3—C7—H7B 109.0
N2—Tb1—N3 66.65 (5) C7i—C7—H7B 109.0
N3i—Tb1—N3 70.67 (7) H7A—C7—H7B 107.8
O1i—Tb1—N1 102.97 (4) N3—C8—C9 116.63 (16)
O1—Tb1—N1 102.97 (4) N3—C8—H8A 108.1
O2i—Tb1—N1 25.82 (4) C9—C8—H8A 108.1
O2—Tb1—N1 25.82 (4) N3—C8—H8B 108.1
N2i—Tb1—N1 78.63 (4) C9—C8—H8B 108.1
N2—Tb1—N1 78.63 (4) H8A—C8—H8B 107.3
N3i—Tb1—N1 144.67 (4) C14—C9—C10 120.42 (18)
N3—Tb1—N1 144.67 (4) C14—C9—C8 120.25 (19)
C10—O1—Tb1 139.80 (12) C10—C9—C8 119.08 (19)
N1—O2—Tb1 95.73 (12) O1—C10—C11 121.83 (18)
O3—N1—O2 121.55 (11) O1—C10—C9 120.05 (17)
O3—N1—O2i 121.55 (11) C11—C10—C9 118.13 (18)
O2—N1—O2i 116.9 (2) C12—C11—C10 120.67 (19)
O3—N1—Tb1 180.0 C12—C11—H11 119.7
O2—N1—Tb1 58.45 (11) C10—C11—H11 119.7
O2i—N1—Tb1 58.45 (11) C11—C12—C13 120.8 (2)
C1—N2—C5 117.83 (17) C11—C12—H12 119.6
C1—N2—Tb1 126.43 (14) C13—C12—H12 119.6
C5—N2—Tb1 115.74 (12) C12—C13—C14 119.2 (2)
C6—N3—C7 109.19 (15) C12—C13—H13 120.4
C6—N3—C8 107.09 (15) C14—C13—H13 120.4
C7—N3—C8 111.34 (15) C13—C14—C9 120.8 (2)
C6—N3—Tb1 105.69 (12) C13—C14—H14 119.6
C7—N3—Tb1 111.67 (11) C9—C14—H14 119.6
Tb1—O2—N1—O3 180.000 (1) Tb1—N3—C7—C7i −38.2 (2)
Tb1—O2—N1—O2i 0.000 (1) C6—N3—C8—C9 −179.19 (19)
C5—N2—C1—C2 −0.5 (3) C7—N3—C8—C9 −59.9 (2)
Tb1—N2—C1—C2 178.82 (17) Tb1—N3—C8—C9 65.61 (19)
N2—C1—C2—C3 0.2 (4) N3—C8—C9—C14 125.3 (2)
C1—C2—C3—C4 0.8 (3) N3—C8—C9—C10 −60.3 (3)
C2—C3—C4—C5 −1.3 (3) Tb1—O1—C10—C11 −142.18 (16)
C1—N2—C5—C4 0.0 (3) Tb1—O1—C10—C9 37.5 (3)
Tb1—N2—C5—C4 −179.43 (14) C14—C9—C10—O1 −179.29 (18)
C1—N2—C5—C6 −179.33 (18) C8—C9—C10—O1 6.3 (3)
Tb1—N2—C5—C6 1.2 (2) C14—C9—C10—C11 0.4 (3)
C3—C4—C5—N2 0.9 (3) C8—C9—C10—C11 −174.00 (18)
C3—C4—C5—C6 −179.80 (18) O1—C10—C11—C12 179.21 (19)
C7—N3—C6—C5 173.14 (16) C9—C10—C11—C12 −0.5 (3)
C8—N3—C6—C5 −66.2 (2) C10—C11—C12—C13 0.3 (3)
Tb1—N3—C6—C5 52.88 (17) C11—C12—C13—C14 −0.2 (4)
N2—C5—C6—N3 −38.3 (2) C12—C13—C14—C9 0.1 (3)
C4—C5—C6—N3 142.41 (18) C10—C9—C14—C13 −0.2 (3)
C6—N3—C7—C7i −154.7 (2) C8—C9—C14—C13 174.1 (2)
C8—N3—C7—C7i 87.2 (2)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8B···O3ii 0.99 2.37 3.338 (3) 166

Symmetry code: (ii) x+1/2, y+1/2, z.

References

  1. Anjos, A. dos, Bortoluzzi, A. J., Caro, M. S. B., Peralta, R. A., Friedermann, G. R., Mangrich, A. S. & Neves, A. (2006). J. Braz. Chem. Soc. 17, 1540–1550.
  2. Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chilton, N. F., Langley, S. K., Moubaraki, B., Soncini, A., Batten, S. R. & Murray, K. S. (2013). Chem. Sci. 4, 1719–1730.
  5. Colotti, G., Ilari, A., Boffi, A. & Morea, V. (2013). Mini Rev. Med. Chem. 13, 211–221. [PubMed]
  6. Diehl, H., Hach, C. C. & Bailar, J. C. (2007). Inorganic Synthesis, pp. 196–201. New York: John Wiley & Sons Inc.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Golchoubian, H. & Gholamnezhad, P. (2009). X-Ray Struct. Anal. Online, 25, 95–96.
  9. Hancock, R. D. (2013). Chem. Soc. Rev. 42, 1500–1524.
  10. Happe, T. & Hemschemeier, A. (2014). Trends Biotechnol. 32, 170–176. [DOI] [PubMed]
  11. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  12. Lanznaster, M., Neves, A., Bortoluzzi, A. J., Assumpção, A. M. C., Vencato, I., Machado, S. P. & Drechsel, S. M. (2006). Inorg. Chem. 45, 1005–1011. [DOI] [PubMed]
  13. Lenze, M., Sedinkin, S. L. & Bauer, E. B. (2013). J. Mol. Catal. A Chem. 373, 161–171.
  14. Luzon, J. & Sessoli, R. (2012). Dalton Trans. 41, 13556–13567. [DOI] [PubMed]
  15. Neves, A., Ceccato, A. S., Erthal, S. M. D., Vencato, I., Nuber, B. & Weiss, J. (1991). Inorg. Chim. Acta, 187, 119–121.
  16. Neves, A., Ceccatto, A. S., Erasmus-Buhr, C., Gehring, S., Haase, W., Paulus, H., Nascimento, O. R. & Batista, A. A. (1993). J. Chem. Soc. Chem. Commun. pp. 1782–1784.
  17. Neves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). Inorg. Chem. 31, 4749–4755.
  18. Nurchi, V. M., Crespo-Alonso, M., Toso, L., Lachowicz, J. I. & Crisponi, G. (2013). Mini Rev. Med. Chem. 13, 1541–1549. [DOI] [PubMed]
  19. Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.
  20. Rinehart, J. D. & Long, J. R. (2011). Chem. Sci. 2, 2078–2085.
  21. Schwingel, E. W., Arend, K., Zarling, J., Neves, A. & Szpoganicz, B. (1996). J. Braz. Chem. Soc. 7, 31–37.
  22. Sears, M. E. (2013). Sci. World J., article no. 219840.
  23. Sessoli, R. & Powell, A. K. (2009). Coord. Chem. Rev. 253, 2328–2341.
  24. Setyawati, I. A., Liu, S., Rettig, S. J. & Orvig, C. (2000). Inorg. Chem. 39, 496–507. [DOI] [PubMed]
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Thomas, F., Arora, H., Philouze, C. & Jarjayes, O. (2010). Inorg. Chim. Acta, 363, 3122–3130.
  27. Totaro, P., Westrup, K. C. M., Boulon, M.-E., Nunes, G. G., Back, D. F., Barison, A., Ciattini, S., Mannini, M., Sorace, L., Soares, J. F., Cornia, A. & Sessoli, R. (2013). Dalton Trans. 42, 4416–4426. [DOI] [PubMed]
  28. Ungur, L., Le Roy, J. J., Korobkov, I., Murugesu, M. & Chibotaru, L. F. (2014). Angew. Chem. Int. Ed. 53, 4413–4417. [DOI] [PubMed]
  29. Westrup, K. C. M., Boulon, M.-E., Totaro, P., Nunes, G. G., Back, D. F., Barison, A., Jackson, M., Paulsen, C., Gatteschi, D., Sorace, L., Cornia, A., Soares, J. F. & Sessoli, R. (2014). Chem. Eur. J. 20, 13681–13691. [DOI] [PubMed]
  30. Wong, E., Caravan, P., Liu, S., Rettig, S. J. & Orvig, C. (1996). Inorg. Chem. 35, 715–724.
  31. Wong, E., Liu, S., Rettig, S. & Orvig, C. (1995). Inorg. Chem. 34, 3057–3064.
  32. Xu, L., Setyawati, I. A., Pierreroy, J., Pink, M., Young, V. G., Patrick, B. O., Rettig, S. J. & Orvig, C. (2000). Inorg. Chem. 39, 5958–5963. [DOI] [PubMed]
  33. Yamada, Y., Takenouchi, S. I., Miyoshi, Y. & Okamoto, K. I. (2010). J. Coord. Chem. 63, 996–1012.
  34. Zhang, P., Zhang, L., Wang, C., Xue, S. F., Lin, S. Y. & Tang, J. K. (2014). J. Am. Chem. Soc. 136, 4484–4487. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026826/lh5741sup1.cif

e-71-00065-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026826/lh5741Isup2.hkl

e-71-00065-Isup2.hkl (182.4KB, hkl)

CCDC reference: 1037922

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES