Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jan;70(1):260–264. doi: 10.1073/pnas.70.1.260

In Vitro Assembly of Bacteriophage Lambda Heads

Dale Kaiser 1, Terrie Masuda 1
PMCID: PMC433227  PMID: 4509659

Abstract

The assembly of plaque-forming particles in cell-free extracts of induced lambda lysogens was observed two ways. (i) DNA isolated from a λ-related phage, 434 for example, is added to an extract of an induced λ lysogen, and plaque-formers with the genotype of the added DNA are detected. (ii) One extract from an induced λ lysogen that carries an amber mutation in one of the head genes (A, B, C, D, or E) is mixed with one carrying an amber mutation in a different head gene; an increase in the number of λ plaque-formers is found over that in either extract alone. These plaque-forming particles have the properties of normal phage particles. They are resistant to DNase, although DNase added to an extract before addition of DNA prevents their appearance; they have a sensitivity to neutralizing antibody and a specificity of adsorption to bacteria characteristic of the source of the extract, but they have the genotype of the added DNA; and they have about the same bouyant density as phage particles.

Mutants in genes B, C, or D can donate DNA to the phage formed by complementation between extracts of different mutants, but mutants in genes A or E cannot. Complementation occurs between a pair of extracts only if one (or both) is a DNA donor. This observation suggests a tentative pathway for head assembly: that the products of genes A and E act before those of B, C, and D.

Keywords: morphogenesis, DNA condensation, in vitro complementation

Full text

PDF
260

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchwald M., Murialdo H., Siminovitch L. The morphogenesis of bacteriophage lambda. II. Identification of the principal structural proteins. Virology. 1970 Oct;42(2):390–400. doi: 10.1016/0042-6822(70)90282-5. [DOI] [PubMed] [Google Scholar]
  2. CAMPBELL A. Distribution of genetic types of transducing lambda phages. Genetics. 1963 Mar;48:409–421. doi: 10.1093/genetics/48.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CAMPBELL A. Sensitive mutants of bacteriophage lambda. Virology. 1961 May;14:22–32. doi: 10.1016/0042-6822(61)90128-3. [DOI] [PubMed] [Google Scholar]
  4. Casjens S., Hohn T., Kaiser A. D. Morphological proteins of phage lambda: identification of the major head protein as the product of gene E. Virology. 1970 Oct;42(2):496–507. doi: 10.1016/0042-6822(70)90293-x. [DOI] [PubMed] [Google Scholar]
  5. Casjens S., Horn T., Kaiser A. D. Head assembly steps controlled by genes F and W in bacteriophage lambda. J Mol Biol. 1972 Mar 14;64(3):551–563. doi: 10.1016/0022-2836(72)90082-4. [DOI] [PubMed] [Google Scholar]
  6. Dove W. F. Action of the lambda chromosome. I. Control of functions late in bacteriophage development. J Mol Biol. 1966 Aug;19(1):187–201. doi: 10.1016/s0022-2836(66)80060-8. [DOI] [PubMed] [Google Scholar]
  7. Edgar R. S., Wood W. B. Morphogenesis of bacteriophage T4 in extracts of mutant-infected cells. Proc Natl Acad Sci U S A. 1966 Mar;55(3):498–505. doi: 10.1073/pnas.55.3.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldberg A. R., Howe M. New mutations in the S cistron of bacteriophage lambda affecting host cell lysis. Virology. 1969 May;38(1):200–202. doi: 10.1016/0042-6822(69)90148-2. [DOI] [PubMed] [Google Scholar]
  9. Liedke-Kulke M., Kaiser A. D. Genetic control of prophage insertion specificity in bacteriophages lambda and 21. Virology. 1967 Jul;32(3):465–474. doi: 10.1016/0042-6822(67)90298-x. [DOI] [PubMed] [Google Scholar]
  10. MACKAL R. P., WERNINGHAUS B., EVANS E. A., Jr THE FORMATION OF LAMBDA BACTERIOPHAGE BY LAMBDA DNA IN DISRUPTED CELL PREPARATIONS. Proc Natl Acad Sci U S A. 1964 Jun;51:1172–1178. doi: 10.1073/pnas.51.6.1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mackinlay A. G., Kaiser A. D. DNA replication in head mutants of bacteriophage lambda. J Mol Biol. 1969 Feb 14;39(3):679–683. doi: 10.1016/0022-2836(69)90155-7. [DOI] [PubMed] [Google Scholar]
  12. Parkinson J. S., Davis R. W. A physical map of the left arm of the lambda chromosome. J Mol Biol. 1971 Mar 14;56(2):425–428. doi: 10.1016/0022-2836(71)90474-8. [DOI] [PubMed] [Google Scholar]
  13. Parkinson J. S. Genetics of the left arm of the chromosome of bacteriophage lambda. Genetics. 1968 Jul;59(3):311–325. doi: 10.1093/genetics/59.3.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schekman R., Wickner W., Westergaard O., Brutlag D., Geider K., Bertsch L. L., Kornberg A. Initiation of DNA synthesis: synthesis of phiX174 replicative form requires RNA synthesis resistant to rifampicin. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2691–2695. doi: 10.1073/pnas.69.9.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Skalka A., Poonian M., Bartl P. Concatemers in DNA replication: electron microscopic studies of partially denatured intracellular lambda DNA. J Mol Biol. 1972 Mar 14;64(3):541–550. doi: 10.1016/0022-2836(72)90081-2. [DOI] [PubMed] [Google Scholar]
  16. Wake R. G., Kaiser A. D., Inman R. B. Isolation and structure of phage lambda head-mutant DNA. J Mol Biol. 1972 Mar 14;64(3):519–540. doi: 10.1016/0022-2836(72)90080-0. [DOI] [PubMed] [Google Scholar]
  17. Weigle J. Studies on head-tail union in bacteriophage lambda. J Mol Biol. 1968 Apr 28;33(2):483–489. doi: 10.1016/0022-2836(68)90204-0. [DOI] [PubMed] [Google Scholar]
  18. Wickner W., Brutlag D., Schekman R., Kornberg A. RNA synthesis initiates in vitro conversion of M13 DNA to its replicative form. Proc Natl Acad Sci U S A. 1972 Apr;69(4):965–969. doi: 10.1073/pnas.69.4.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wu R., Kaiser A. D. Mapping the 5'-terminal nucleotides of the DNA of bacteriophage lambda and related phages. Proc Natl Acad Sci U S A. 1967 Jan;57(1):170–177. doi: 10.1073/pnas.57.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wu R., Taylor E. Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J Mol Biol. 1971 May 14;57(3):491–511. doi: 10.1016/0022-2836(71)90105-7. [DOI] [PubMed] [Google Scholar]
  21. Zgaga V. Formation of bacteriophage lambda infective particles from lambda DNA in the presence of the crude extract of Escherichia coli K12 S. Virology. 1967 Mar;31(3):559–562. doi: 10.1016/0042-6822(67)90240-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES