Abstract
The crystal and molecular structure of N,N′-dimethyl-3,6-epitetrathio-2,5-piperazinedione (C6H8O2N2S4) has been determined from three-dimensional x-ray diffraction data collected by counter techniques. The substance crystallizes in the orthorhombic space group Fdd2, with a = 15.352(5), b = 20.432(7), and c = 6.635(2) Å; V = 2081.2(8) Å3, D(meas) = 1.72(2) g/cm3, and z = 8 molecules per unit cell. The molecule lies on a crystallographic 2-fold axis, the piperazinedione ring is in the boat conformation, and the deviation from planarity is 18°. The bonds of the tetrasulfide chain alternate in length so that the S-S distances are 2.0244(9), 2.076(1), and 2.0244(9) Å. The structural data were refined by least-squares methods to an R(F) of 2.5% by use of the 1089 independent reflections (2θ ≤ 71°; MoKα) for which F02 ≥ 3σ (F02). Since this molecule is chemically identical with the active center of the recently isolated natural product sporidesmin G, our structural study constitutes a description of the epitetrathio-2,5-piperazinedione fragment of that molecule.
Keywords: x-ray structures, cyclic dipeptides, active site of sporidesmin G, viral inhibitors, cytotoxins, Pythomyces chartarum
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benedetti E., Corradini P., Goodman M., Pedone C. Flexibility of supposed "rigid" molecules: substituted 2,5-piperazinediones (diketopiperazines). Proc Natl Acad Sci U S A. 1969 Mar;62(3):650–652. doi: 10.1073/pnas.62.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caillet J., Pullman B., Maigret B. Molecular orbital calculations on the folding of cyclic dipeptides with aromatic and aliphatic side chains. Biopolymers. 1971;10(1):221–224. doi: 10.1002/bip.360100114. [DOI] [PubMed] [Google Scholar]
- Francis E., Rahman R., Safe S., Taylor A. Sporidesmins. XII. Isolation and structure of sporidesmin G, a naturally-occuring 3,6-epitetrahiopiperazine-2,5-dione. J Chem Soc Perkin 1. 1972;4:470–472. [PubMed] [Google Scholar]
- Fridrichsons J., Mathieson A. M. The crystal structure of gliotoxin. Acta Crystallogr. 1967 Sep 10;23(3):439–448. doi: 10.1107/s0365110x67002944. [DOI] [PubMed] [Google Scholar]
- Hauser D., Weber H. P., Sigg H. P. Isolierung und Strukturaufklärung von Chaetocin. Helv Chim Acta. 1970;53(5):1061–1073. doi: 10.1002/hlca.19700530521. [DOI] [PubMed] [Google Scholar]
- Kopple K. D., Marr D. H. Conformation of cyclic peptides. The folding of cyclic dipeptides containing an aromatic side chain. J Am Chem Soc. 1967 Nov 22;89(24):6193–6200. doi: 10.1021/ja01000a035. [DOI] [PubMed] [Google Scholar]
- Kopple K. D., Ohnishi M. Conformations of cyclic peptides. II. Side-chain conformation and ring shape in cyclic dipeptides. J Am Chem Soc. 1969 Feb 12;91(4):962–975. doi: 10.1021/ja01032a029. [DOI] [PubMed] [Google Scholar]
- MICHALSKY J., CTVRTNIK J., HORAKOVA Z., BYDZOVSKYV [On the tuberculostatic activity of 2,5-bis-(amino-oxymethyl)-3,6-diketopiperazine, a metabolite of cycloserine]. Experientia. 1962 May 15;18:217–218. doi: 10.1007/BF02148308. [DOI] [PubMed] [Google Scholar]
- Nagarajan R., Neuss N., Marsh M. M. Aranotin and related metabolites. 3. Configuration and conformation of acetylaranotin. J Am Chem Soc. 1968 Nov 6;90(23):6518–6519. doi: 10.1021/ja01025a053. [DOI] [PubMed] [Google Scholar]
