Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Feb;70(2):456–458. doi: 10.1073/pnas.70.2.456

Illicit Transport: The Oligopeptide Permease

Bruce N Ames *, Giovanna Ferro-Luzzi Ames *, Janis Dillaha Young , Dorinne Tsuchiya , Jean Lecocq
PMCID: PMC433281  PMID: 4568730

Abstract

The oligopeptide permease of Escherichia coli has been characterized by Payne, Gilvarg, and their colleagues. We have confirmed its existence in Salmonella typhimurium, and have isolated a series of mutants lacking the permease. We use this transport system for smuggling a histidine biosynthetic intermediate, histidinol phosphate ester, into the bacteria as its glycylglycyl derivative, Gly-Gly-histidinol phosphate. Free histidinol phosphate ester is not transported into Salmonella. Several amino-acid analogues are shown to be much more inhibitory to Salmonella when presented to the bacteria in the form of tripeptides than as the free amino acids. The implications of this work for practical purposes are discussed. The synthesis of Gly-Gly-histidinol phosphate is described.

Keywords: histidinol phosphate transport, amino-acid analogue transport, Salmonella

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES G. F. UPTAKE OF AMINO ACIDS BY SALMONELLA TYPHIMURIUM. Arch Biochem Biophys. 1964 Jan;104:1–18. doi: 10.1016/s0003-9861(64)80028-x. [DOI] [PubMed] [Google Scholar]
  2. Ames G. F., Roth J. R. Histidine and aromatic permeases of Salmonella typhimurim. J Bacteriol. 1968 Nov;96(5):1742–1749. doi: 10.1128/jb.96.5.1742-1749.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Gilvarg C., Levin Y. Response of Escherichia coli to ornithyl peptides. J Biol Chem. 1972 Jan 25;247(2):543–549. [PubMed] [Google Scholar]
  5. Hartman P. E., Hartman Z., Stahl R. C. Classification and mapping of spontaneous and induced mutations in the histidine operon of Salmonella. Adv Genet. 1971;16:1–34. doi: 10.1016/s0065-2660(08)60352-1. [DOI] [PubMed] [Google Scholar]
  6. Luckey M., Pollack J. R., Wayne R., Ames B. N., Neilands J. B. Iron uptake in Salmonella typhimurium: utilization of exogenous siderochromes as iron carriers. J Bacteriol. 1972 Sep;111(3):731–738. doi: 10.1128/jb.111.3.731-738.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Payne J. W. Effects of N-methyl peptide bonds on peptide utilization by Escherichia coli. J Gen Microbiol. 1972 Jul;71(2):259–265. doi: 10.1099/00221287-71-2-259. [DOI] [PubMed] [Google Scholar]
  8. Payne J. W. The requirement for the protonated -amino group for the transport of peptides in Escherichia coli. Biochem J. 1971 Jun;123(2):245–253. doi: 10.1042/bj1230245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Payne J. W. The utilization of prolyl peptides by Escherichia coli. Biochem J. 1971 Jun;123(2):255–260. doi: 10.1042/bj1230255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sussman A. J., Gilvarg C. Peptide transport and metabolism in bacteria. Annu Rev Biochem. 1971;40:397–408. doi: 10.1146/annurev.bi.40.070171.002145. [DOI] [PubMed] [Google Scholar]
  11. Venkateswaran P. S., Wu H. C. Isolation and characterization of a phosphonomycin-resistant mutant of Escherichia coli K-12. J Bacteriol. 1972 Jun;110(3):935–944. doi: 10.1128/jb.110.3.935-944.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES