Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Feb;70(2):557–561. doi: 10.1073/pnas.70.2.557

Mechanism of Interferon Uptake in Parental and Somatic Monkey-Mouse Hybrid Cells

C Chany 1,2, A Grégoire 1,2, M Vignal 1,2, J Lemaitre-Moncuit 1,2, P Brown 1,2,*, F Besançon 1,2, H Suarez 1,2, R Cassingena 1,2
PMCID: PMC433305  PMID: 4346894

Abstract

Dose-response curves of interferons in different sensitive cells are regularly sigmoidal. In somatic monkey-mouse hybrid cells, however, a significant decrease in the slope of the curve for primate interferon was observed, while the dose-response effect was unaltered for mouse interferon. High concentrations of primate interferon were 10- to 100-times less effective in hybrid clones than in parental monkey CV-1 cells; at low concentrations the antiviral effect was 10- to 20-times higher in hybrid clones than in the parental cells. The receptor(s) for primate interferon located on the cell membrane was destroyed by trypsin but not by EDTA. Similarly, acid pH inactivated these receptor sites. We, thus, postulate that the antiviral effect is, at least partially, related to the amount of interferon taken up by the cells. Uptake could be conditioned by active cooperation of two cell-specific factors: a receptor and an activator. The activator might be missing or inactivated for primate interferon in the hybrid cells. We suggest that the putative antiviral protein is not cell-species specific, and that information for its synthesis in the hybrid cells might be located on a mouse rather than a monkey chromosome.

Keywords: antiviral effect, regulatory mechanisms, somatic cell hybrids

Full text

PDF
557

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Besançon F., Vignal M., Chany C. Sensibilité des cellules en état de résistance antivirale à l'interféron. C R Acad Sci Hebd Seances Acad Sci D. 1971 Dec 20;273(25):2694–2697. [PubMed] [Google Scholar]
  2. Cassingena R., Chany C., Vignal M., Suarez H., Estrade S., Lazar P. Use of monkey-mouse hybrid cells for the study of the cellular regualtion of interferon production and action. Proc Natl Acad Sci U S A. 1971 Mar;68(3):580–584. doi: 10.1073/pnas.68.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chany C., Brailovsky C. Stimulating interaction between viruses (stimulons). Proc Natl Acad Sci U S A. 1967 Jan;57(1):87–94. doi: 10.1073/pnas.57.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chany C., Fournier F., Rousset S. Potentiation of the antiviral activity of interferon by actinomycin D. Nat New Biol. 1971 Mar 24;230(12):113–114. doi: 10.1038/newbio230113a0. [DOI] [PubMed] [Google Scholar]
  5. Chany C., Robbe-Maridor F. Enhancing effect of the murine sarcoma virus (MSV) on the replication of the mouse hepatitis virus (MHV) in vitro. Proc Soc Exp Biol Med. 1969 May;131(1):30–35. doi: 10.3181/00379727-131-33798. [DOI] [PubMed] [Google Scholar]
  6. Chany C., Vignal M. Etude du mécanisme de l'étst réfractaiere des cellules à l1 production d'interféron, près inductions répétées. C R Acad Sci Hebd Seances Acad Sci D. 1968 Nov 18;267(21):1798–1800. [PubMed] [Google Scholar]
  7. Duc-Goiran P., Galliot B., Chany C. Studies on virus-induced interferons produced by the human amniotic membrane and white blood cells. Arch Gesamte Virusforsch. 1971;34(3):232–243. doi: 10.1007/BF01242997. [DOI] [PubMed] [Google Scholar]
  8. Fournier F., Falcoff E., Chany C. Demonstration, mass production and characterization of a heavy molecular weight human interferon. J Immunol. 1967 Nov;99(5):1036–1041. [PubMed] [Google Scholar]
  9. Fournier F., Rousset S., Chany C. Investigations on a tissue antagonist of interferon (TAI). Proc Soc Exp Biol Med. 1969 Dec;132(3):943–950. doi: 10.3181/00379727-132-34343. [DOI] [PubMed] [Google Scholar]
  10. Friedman R. M. Interferon binding: the first step in establishment of antiviral activity. Science. 1967 Jun 30;156(3783):1760–1761. doi: 10.1126/science.156.3783.1760. [DOI] [PubMed] [Google Scholar]
  11. German A., Didry J. R., Quero A. M., Poindron P. L'induction de l'état antiviral dans les cellules d'embryon de poulet nécessite-t-elle l'action d'une ou de plusieurs molécules d'interféron? Etude mathématique de la courbe dose-réponse. C R Acad Sci Hebd Seances Acad Sci D. 1970 Oct 12;271(15):1337–1340. [PubMed] [Google Scholar]
  12. Gifford G. E., Koch A. L. The interferon dose response curve and its possible significance. J Theor Biol. 1969 Feb;22(2):271–283. doi: 10.1016/0022-5193(69)90005-8. [DOI] [PubMed] [Google Scholar]
  13. LINDENMANN J., GIFFORD G. E. Studies on vaccinia virus plaque formation and its inhibition by interferon. III. A simplified plaque inhibition assay of interferon. Virology. 1963 Mar;19:302–309. doi: 10.1016/0042-6822(63)90068-0. [DOI] [PubMed] [Google Scholar]
  14. LITTLEFIELD J. W. STUDIES ON THYMIDINE KINASE IN CULTURED MOUSE FIBROBLASTS. Biochim Biophys Acta. 1965 Jan 11;95:14–22. doi: 10.1016/0005-2787(65)90206-6. [DOI] [PubMed] [Google Scholar]
  15. LWOFF A., LWOFF M. [On factors of viral growth and their role in the development of infection]. Ann Inst Pasteur (Paris) 1960 Feb;98:173–203. [PubMed] [Google Scholar]
  16. Lab M., Koehren F. Potentialisation de l'action antivirale de l'interféron par la cycloheximide. Ann Inst Pasteur (Paris) 1972 Mar;122(3):569–573. [PubMed] [Google Scholar]
  17. Leaute J. B., Fiszman M. Y., Chany C., Girard M. Effet d'un abaissement de pH sur le développement du virus de la stomatite vésiculaire. C R Acad Sci Hebd Seances Acad Sci D. 1971 Nov 29;273(22):2176–2179. [PubMed] [Google Scholar]
  18. Léauté J. B., Fiszman M. Y., Chany C., Girard M. Etude de l'influence d'un abaissement de pH sur le métabolisme cellulaire, et sur le développement du virus de la poliomyélite. C R Acad Sci Hebd Seances Acad Sci D. 1971 Nov 22;273(21):2024–2027. [PubMed] [Google Scholar]
  19. MONTAGNIER L., MACPHERSON I. CROISSANCE S'ELECTIVE EN G'ELOSE DE CELLULES DE HAMSTER TRANSFORM'EES PAR LE VIRUS DU POLYOME. C R Hebd Seances Acad Sci. 1964 Apr 20;258:4171–4173. [PubMed] [Google Scholar]
  20. Matsuya Y., Green H. Somatic cell hybrid between the established human line D98 (presumptive HeLa) and 3T3. Science. 1969 Feb 14;163(3868):697–698. doi: 10.1126/science.163.3868.697. [DOI] [PubMed] [Google Scholar]
  21. Perlin M., Hallum J. V. Effect of acid pH on macromolecular synthesis in L cells. J Cell Biol. 1971 Apr;49(1):66–74. doi: 10.1083/jcb.49.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Suarez H. G., Chany C., Cassingena R., Vignal M., Lemaitre J. Localisation du chromosome responsable de la synthèse de l'interféron simien. C R Acad Sci Hebd Seances Acad Sci D. 1972 Jun 26;274(26):3632–3634. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES