Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Mar;70(3):880–884. doi: 10.1073/pnas.70.3.880

Regulation of Phosphorylation of a Specific Protein in Toad-Bladder Membrane by Antidiuretic Hormone and Cyclic AMP, and Its Possible Relationship to Membrane Permeability Changes

Robert J DeLorenzo 1,2, Kenneth G Walton 1,2, Peter F Curran 1,2, Paul Greengard 1,2
PMCID: PMC433380  PMID: 4351809

Abstract

Phosphorylation of a specific protein was decreased in intact toad bladders by exposure to either antidiuretic hormone or monobutyryl cyclic AMP. The decrease in phosphorylation caused by these agents preceded the change in electrical potential difference (an indicator of the rate of sodium ion transport) observed in response to the same compounds. The addition of cyclic AMP to homogenates of toad bladder led to a decrease in phosphorylation of the same, or a similar, protein. In subcellular fractionation studies, the effect of cyclic AMP on the phosphorylation of this protein was observed in those fractions rich in membrane fragments, but not in the nuclear or cell-sap fractions. These and other results are compatible with the possibility that the regulation by vasopressin and cyclic AMP of sodium and/or water transport in toad bladder may be mediated through regulation of the phosphorylation of this specific protein.

Keywords: monobutyryl cyclic AMP, vasopressin, phosphoprotein phosphatase

Full text

PDF
880

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Civan M. M., Frazier H. S. The site of the stimulatory action of vasopressin on sodium transport in toad bladder. J Gen Physiol. 1968 May;51(5):589–605. doi: 10.1085/jgp.51.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dawson R. M., Eichberg J. Diphosphoinositide and triphosphoinositide in animal tissues. Extraction, estimation and changes post mortem. Biochem J. 1965 Sep;96(3):634–643. doi: 10.1042/bj0960634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dousa T. P., Sands H., Hechter O. Cyclic AMP-dependent reversible phosphorylation of renal medullary plasma membrane protein. Endocrinology. 1972 Sep;91(3):757–763. doi: 10.1210/endo-91-3-757. [DOI] [PubMed] [Google Scholar]
  4. FRAZIER H. S., DEMPSEY E. F., LEAF A. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J Gen Physiol. 1962 Jan;45:529–543. doi: 10.1085/jgp.45.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  6. Herrera F. C. Action of ouabain on sodium transport in the toad urinary bladder. Am J Physiol. 1966 May;210(5):980–986. doi: 10.1152/ajplegacy.1966.210.5.980. [DOI] [PubMed] [Google Scholar]
  7. Jard S., Bastide F. A cyclic AMP-dependent protein kinase from frog bladder epithelial cells. Biochem Biophys Res Commun. 1970 May 22;39(4):559–566. doi: 10.1016/0006-291x(70)90240-8. [DOI] [PubMed] [Google Scholar]
  8. Johnson E. M., Maeno H., Greengard P. Phosphorylation of endogenous protein of rat brain by cyclic adenosine 3',5'-monophosphate-dependent protein kinase. J Biol Chem. 1971 Dec 25;246(24):7731–7739. [PubMed] [Google Scholar]
  9. Johnson E. M., Ueda T., Maeno H., Greengard P. Adenosine 3',5-monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum. J Biol Chem. 1972 Sep 10;247(17):5650–5652. [PubMed] [Google Scholar]
  10. Kuehn G. D. Cell cycle variation in cyclic adenosine 3',5'-monophosphate-dependent inhibition of protein kinase from Physarum polycephalum. Biochem Biophys Res Commun. 1972 Oct 17;49(2):414–419. doi: 10.1016/0006-291x(72)90426-3. [DOI] [PubMed] [Google Scholar]
  11. Kuo J. F., Greengard P. An adenosine 3',5'-monophosphate-dependent protein kinase from Escherichia coli. J Biol Chem. 1969 Jun 25;244(12):3417–3419. [PubMed] [Google Scholar]
  12. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1349–1355. doi: 10.1073/pnas.64.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuo J. F., Krueger B. K., Sanes J. R., Greengard P. Cyclic nucleotide-dependent protein kinases. V. Preparation and properties of adenosine 3',5'-monophosphate-dependent protein kinase from various bovine tissues. Biochim Biophys Acta. 1970 Jul 15;212(1):79–91. doi: 10.1016/0005-2744(70)90180-4. [DOI] [PubMed] [Google Scholar]
  14. LICHTENSTEIN N. S., LEAF A. EFFECT OF AMPHOTERICIN B ON THE PERMEABILITY OF THE TOAD BLADDER. J Clin Invest. 1965 Aug;44:1328–1342. doi: 10.1172/JCI105238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Leaf A. Transepithelial transport and its hormonal control in toad bladder. Ergeb Physiol. 1965;56:216–263. [PubMed] [Google Scholar]
  17. Maeno H., Johnson E. M., Greengard P. Subcellular distribution of adenosine 3',5'-monophosphate-dependent protein kinase in rat brain. J Biol Chem. 1971 Jan 10;246(1):134–142. [PubMed] [Google Scholar]
  18. Miyamoto E., Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. 3. Purification and properties of adenosine 3',5'-monophosphate-dependent protein kinase from bovine brain. J Biol Chem. 1969 Dec 10;244(23):6395–6402. [PubMed] [Google Scholar]
  19. Orloff J., Handler J. The role of adenosine 3',5'-phosphate in the action of antidiuretic hormone. Am J Med. 1967 May;42(5):757–768. doi: 10.1016/0002-9343(67)90093-9. [DOI] [PubMed] [Google Scholar]
  20. Reid M. S., Bieleski R. L. A simple apparatus for vertical flat-sheet polyacrylamide gel electrophoresis. Anal Biochem. 1968 Mar;22(3):374–381. doi: 10.1016/0003-2697(68)90278-9. [DOI] [PubMed] [Google Scholar]
  21. Singer I., Civan M. M., Baddour R. F., Leaf A. Interactions of amphotericin B, vasopressin, and calcium in toad urinary bladder. Am J Physiol. 1969 Oct;217(4):938–945. doi: 10.1152/ajplegacy.1969.217.4.938. [DOI] [PubMed] [Google Scholar]
  22. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  23. de Graeff J., Dempsey E. F., Lameyer L. D., Leaf A. Phospholipids and active sodium transport in toad bladder. Biochim Biophys Acta. 1965 Jul 7;106(1):155–170. doi: 10.1016/0005-2760(65)90104-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES