Abstract
The electromechanochemical model has been reformulated to take account of the close connection between energy coupling and catalysis. In catalysis the protein is programmed to utilize thermal energy to produce local strains in the catalytic cavity and to generate conformational states that favor substrate → product conversion. Energy coupling involves transfer of vibrational energy through the protein. Underlying these two energy transductional maneuvers is the concept of a pulsating protein capable of redistributing electromechanochemical potential energy in a programmed fashion. The mitochondrial supermolecule has been defined, and it has been shown how the supermolecule concept rationalizes the coupling options, the stoichiometry of the coupling complexes, and the multistep character of electron transfer.
Keywords: supermolecule, energy transfer, conformon, protein pulsations, mechanism of catalysis, EMC model
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baum H., Silman H. I., Rieske H. S., Lipton S. H. On the composition and structural organization of complex 3 of the mitochondrial electron transfer chain. J Biol Chem. 1967 Nov 10;242(21):4876–4887. [PubMed] [Google Scholar]
- Blake C. C., Swan I. D. X-ray analysis of structure of human lysozyme at 6 A resolution. Nat New Biol. 1971 Jul 7;232(27):12–15. doi: 10.1038/newbio232012a0. [DOI] [PubMed] [Google Scholar]
- Brown K. G., Erfurth S. C., Small E. W., Peticolas W. L. Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1467–1469. doi: 10.1073/pnas.69.6.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capaldi R. A., Green D. E. Membrane proteins and membrane structure. FEBS Lett. 1972 Sep 15;25(2):205–209. doi: 10.1016/0014-5793(72)80486-1. [DOI] [PubMed] [Google Scholar]
- Capaldi R. A., Hayashi H. The polypeptide composition of cytochrome oxidase from beef heart mitochondria. FEBS Lett. 1972 Oct 1;26(1):261–263. doi: 10.1016/0014-5793(72)80587-8. [DOI] [PubMed] [Google Scholar]
- Dickerson R. E., Takano T., Eisenberg D., Kallai O. B., Samson L., Cooper A., Margoliash E. Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. J Biol Chem. 1971 Mar 10;246(5):1511–1535. [PubMed] [Google Scholar]
- FERNANDEZ MORAN H., ODA T., BLAIR P. V., GREEN D. E. A MACROMOLECULAR REPEATING UNIT OF MITOCHONDRIAL STRUCTURE AND FUNCTION. CORRELATED ELECTRON MICROSCOPIC AND BIOCHEMICAL STUDIES OF ISOLATED MITOCHONDRIA AND SUBMITOCHONDRIAL PARTICLES OF BEEF HEART MUSCLE. J Cell Biol. 1964 Jul;22:63–100. doi: 10.1083/jcb.22.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FLEISCHER S., BRIERLEY G., KLOUWEN H., SLAUTTERBACK D. B. Studies of the electron transfer system. 47. The role of phospholipids in electron transfer. J Biol Chem. 1962 Oct;237:3264–3272. [PubMed] [Google Scholar]
- Green D. E., Ji S., Brucker R. F. Structure-function unitization model of biological membranes. J Bioenerg. 1973 Jan;4(1):253–284. doi: 10.1007/BF01516061. [DOI] [PubMed] [Google Scholar]
- Green D. E., Ji S. Electromechanochemical model of mitochondrial structure and function. Proc Natl Acad Sci U S A. 1972 Mar;69(3):726–729. doi: 10.1073/pnas.69.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green D. E., Ji S. The electromechanochemical model of mitochondrial structure and function. J Bioenerg. 1972 May;3(1):159–202. doi: 10.1007/BF01516006. [DOI] [PubMed] [Google Scholar]
- Hatase O., Ida T. Conformational changes in submitochondrial particles of beef heart. J Biochem. 1972 May;71(5):759–765. doi: 10.1093/oxfordjournals.jbchem.a129825. [DOI] [PubMed] [Google Scholar]
- Kagawa Y., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. X. Correlation of morphology and function in submitochondrial particles. J Biol Chem. 1966 May 25;241(10):2475–2482. [PubMed] [Google Scholar]
- Kopaczyk K., Asai J., Green D. E. Reconstitution of the repeating unit of the mitochondrial inner membrane. Arch Biochem Biophys. 1968 Jul;126(1):358–379. doi: 10.1016/0003-9861(68)90592-4. [DOI] [PubMed] [Google Scholar]
- Lieb W. R., Stein W. D. Carrier and non-carrier models for sugar transport in the human red blood cell. Biochim Biophys Acta. 1972 Apr 18;265(2):187–207. doi: 10.1016/0304-4157(72)90002-0. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Asai J. Studies on the mitochondrial adenosine triphosphatase system. V. Localization of the oligomycin-sensitivity conferring protein. Biochem Biophys Res Commun. 1968 Nov 8;33(3):441–447. doi: 10.1016/0006-291x(68)90592-5. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Smoly J. M., Tzagoloff A. Studies on the mitochondrial adenosine triphosphatase system. I. Restoration of adenosine triphosphate-dependent reactions in salt-extracted submitochondrial particles. J Biol Chem. 1968 Apr 10;243(7):1589–1597. [PubMed] [Google Scholar]
- Takano T., Swanson R., Kallai O. B., Dickerson R. E. Conformational changes upon reduction of cytochrome c. Cold Spring Harb Symp Quant Biol. 1972;36:397–404. doi: 10.1101/sqb.1972.036.01.051. [DOI] [PubMed] [Google Scholar]
- Tzagoloff A., McConnell D. G., MacLennan D. H. Studies on the electron transfer system. LXIX. "Solubilization" of the mitochondrial inner membrane by sonic oscillation. J Biol Chem. 1968 Aug 10;243(15):4117–4122. [PubMed] [Google Scholar]
- Tzagoloff A., Meagher P. Assembly of the mitochondrial membrane system. V. Properties of a dispersed preparation of the rutamycin-sensitive adenosine triphosphatase of yeast mitochondria. J Biol Chem. 1971 Dec 10;246(23):7328–7336. [PubMed] [Google Scholar]