Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Mar;70(3):919–923. doi: 10.1073/pnas.70.3.919

Population Analysis of the Deinduction Kinetics of Galactose Long-Term Adaptation Mutants of Yeast

Shinji Tsuyumu 1, Bruce G Adams 1
PMCID: PMC433388  PMID: 4577139

Abstract

By use of a selective galactose agar medium containing ethidium bromide, a population analysis of the deinduction kinetics of yeast galactose long-term adaptation mutants (gal 3) has been done. It was first determined that the gal 3 mutation is specific to the yeast galactose system and that induced cultures of gal 3 strains are capable of growth on galactose agar medium containing ethidium bromide, whereas noninduced cultures are not. Population analyses of induced gal 3 strains under going deinduction in the absence of galactose demonstrate that a minimum number of five induction units per cell are required for induction of the galactose system. It is concluded that: these induction units are actively synthesized only in the presence of inducer and are diluted out through cell division; they are stable under nongrowing conditions; they are heterogeneous in nature; at most two of the five minimum units are products of the gal 2 locus; and the other units may be three of one type, one of one type and two of another, or one each of three different types.

Keywords: ethidium bromide, heterogeneous induction units, endogenous inducer

Full text

PDF
919

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams B. G. Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J Bacteriol. 1972 Aug;111(2):308–315. doi: 10.1128/jb.111.2.308-315.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COHN M., HORIBATA K. Analysis of the differentiation and of the heterogeneity within a population of Escherichia coli undergoing induced beta-galactosidase synthesis. J Bacteriol. 1959 Nov;78:613–623. doi: 10.1128/jb.78.5.613-623.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DOUGLAS H. C., CONDIE F. The genetic control of galactose utilization in Saccharomyces. J Bacteriol. 1954 Dec;68(6):662–670. doi: 10.1128/jb.68.6.662-670.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldring E. S., Grossman L. I., Marmur J. Petite mutation in yeast. II. Isolation of mutants containing mitochondrial deoxyribonucleic acid of reduced size. J Bacteriol. 1971 Jul;107(1):377–381. doi: 10.1128/jb.107.1.377-381.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. JOHNSTON J. R., MORTIMER R. K. Use of snail digestive juice in isolation of yeast spore tetrads. J Bacteriol. 1959 Aug;78:292–292. doi: 10.1128/jb.78.2.292-292.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Novick A., Weiner M. ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):553–566. doi: 10.1073/pnas.43.7.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. SPIEGELMAN S., SUSSMAN R. R., PINSKA E. On the cytoplasmic nature of "long-term adaptation" in yeast. Proc Natl Acad Sci U S A. 1950 Nov;36(11):591–606. doi: 10.1073/pnas.36.11.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SPIEGELMAN S. The particulate transmission of enzyme-forming capacity in yeast. Cold Spring Harb Symp Quant Biol. 1951;16:87–98. doi: 10.1101/sqb.1951.016.01.008. [DOI] [PubMed] [Google Scholar]
  9. Spiegelman S., Delorenzo W. F., Campbell A. M. A Single-Cell Analysis of the Transmission of Enzyme-Forming Capacity in Yeast. Proc Natl Acad Sci U S A. 1951 Aug;37(8):513–524. doi: 10.1073/pnas.37.8.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Spiegelman S., Delorenzo W. F. Substrate Stabilization of Enzyme-Forming Capacity During the Segregation of a Heterozygote. Proc Natl Acad Sci U S A. 1952 Jul;38(7):583–592. doi: 10.1073/pnas.38.7.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wickerham L. J. A Critical Evaluation of the Nitrogen Assimilation Tests Commonly Used in the Classification of Yeasts. J Bacteriol. 1946 Sep;52(3):293–301. [PMC free article] [PubMed] [Google Scholar]
  12. Wu H. C., Kalckar H. M. Endogenous induction of the galactose operon in Escherichia coli K12. Proc Natl Acad Sci U S A. 1966 Mar;55(3):622–629. doi: 10.1073/pnas.55.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES