Abstract
Skin fibroblasts biopsied from a patient with clinical symptoms of the Hutchinson-Gilford progeria syndrome failed to show evidence of normal DNA strand rejoining in vitro after exposure to cobalt-60 gamma irradiation. Control human diploid fibroblasts of fetal origin in early passage, skin fibroblasts of adult origin, and an established line of human liver cells (LICH) all showed essentially complete rejoining of radiation-induced strand breaks within 30 min after irradiation, as evidenced by DNA sedimentation profiles in alkaline sucrose gradients. The results suggest that an enzyme involved in DNA repair may be absent or greatly reduced in efficiency in cells from this patient with the progeria syndrome. Such a repair-deficient cell strain may prove useful in the study of the molecular events associated with x-ray-type damage and its repair in mammalian cells.
Keywords: Hutchinson-Gilford progeria syndrome, x-irradiation, DNA strand breaks, senescence
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CHANG R. S. M. Continuous subcultivation of epithelial-like cells from normal human tissues. Proc Soc Exp Biol Med. 1954 Nov;87(2):440–443. doi: 10.3181/00379727-87-21406. [DOI] [PubMed] [Google Scholar]
- Cleaver J. E. DNA damage and repair in light-sensitive human skin disease. J Invest Dermatol. 1970 Mar;54(3):181–195. doi: 10.1111/1523-1747.ep12280225. [DOI] [PubMed] [Google Scholar]
- Cleaver J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968 May 18;218(5142):652–656. doi: 10.1038/218652a0. [DOI] [PubMed] [Google Scholar]
- Cleaver J. E., Thomas G. H., Burki H. J. Biological damage from intranuclear tritium: DNA strand breaks and their repair. Science. 1972 Sep 15;177(4053):996–998. doi: 10.1126/science.177.4053.996. [DOI] [PubMed] [Google Scholar]
- Cleaver J. E. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc Natl Acad Sci U S A. 1969 Jun;63(2):428–435. doi: 10.1073/pnas.63.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danes B. S. Progeria: a cell culture study on aging. J Clin Invest. 1971 Sep;50(9):2000–2003. doi: 10.1172/JCI106692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeBusk F. L. The Hutchinson-Gilford progeria syndrome. Report of 4 cases and review of the literature. J Pediatr. 1972 Apr;80(4):697–724. doi: 10.1016/s0022-3476(72)80229-4. [DOI] [PubMed] [Google Scholar]
- Elkind M. M., Kamper C. Two forms of repair of DNA in mammalian cells following irradiation. Biophys J. 1970 Mar;10(3):237–245. doi: 10.1016/S0006-3495(70)86296-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein S. Lifespan of cultured cells in progeria. Lancet. 1969 Feb 22;1(7591):424–424. doi: 10.1016/s0140-6736(69)91404-4. [DOI] [PubMed] [Google Scholar]
- Huberman J. A., Riggs A. D. On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol. 1968 Mar 14;32(2):327–341. doi: 10.1016/0022-2836(68)90013-2. [DOI] [PubMed] [Google Scholar]
- Kapp D. S., Smith K. C. Lack of in vitro repair of x-ray-induced chain breaks in DNA by the polynucleotide-joining enzyme. Int J Radiat Biol Relat Stud Phys Chem Med. 1969 Jan 17;14(6):567–571. doi: 10.1080/09553006914551741. [DOI] [PubMed] [Google Scholar]
- Kleijer W. J., Lohman P. H., Mulder M. P., Bootsma D. Repair of x-ray damage in DNA of cultivated cells from patients having xeroderma pigmentosum. Mutat Res. 1970 May;9(5):517–523. doi: 10.1016/0027-5107(70)90036-9. [DOI] [PubMed] [Google Scholar]
- Lett J. T., Caldwell I., Dean C. J., Alexander P. Rejoining of x-ray induced breaks in the DNA of leukaemia cells. Nature. 1967 May 20;214(5090):790–792. doi: 10.1038/214790a0. [DOI] [PubMed] [Google Scholar]
- Lett J. T., Klucis E. S., Sun C. On the size of the DNA in the mammalian chromosome. Structural subunits. Biophys J. 1970 Mar;10(3):277–292. doi: 10.1016/S0006-3495(70)86300-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lett J. T., Sun C. The production of strand breaks in mammalian DNA by X-rays: at different stages in the cell cycle. Radiat Res. 1970 Dec;44(3):771–787. [PubMed] [Google Scholar]
- Little J. B. Differential response of rapidly and slowly proliferating human cells to X irradiation. Radiology. 1969 Aug;93(2):307–313. doi: 10.1148/93.2.307. [DOI] [PubMed] [Google Scholar]
- Martin G. M., Sprague C. A., Epstein C. J. Replicative life-span of cultivated human cells. Effects of donor's age, tissue, and genotype. Lab Invest. 1970 Jul;23(1):86–92. [PubMed] [Google Scholar]
- McBurney M. W., Graham F. L., Whitmore G. F. Sedimentation analysis of DNA from irradiated and unirradiated L-cells. Biophys J. 1972 Apr;12(4):369–383. doi: 10.1016/S0006-3495(72)86090-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ormerod M. G., Stevens U. The rejoining of x-ray-induced strand breaks in the DNA of a murine lymphoma cell (L5178Y). Biochim Biophys Acta. 1971 Feb 25;232(1):72–82. doi: 10.1016/0005-2787(71)90492-8. [DOI] [PubMed] [Google Scholar]
- Richardson C. C. Enzymes in DNA metabolism. Annu Rev Biochem. 1969;38:795–840. doi: 10.1146/annurev.bi.38.070169.004051. [DOI] [PubMed] [Google Scholar]
- Town C. D., Smith K. C., Kaplan H. S. Influence of ultrafast repair processes (independent of DNA polymerase I) on the yield of DNA single-strand breaks in Escherichia coli K-12 x-irradiated in the presence of or absence of oxygen. Radiat Res. 1972 Oct;52(1):99–114. [PubMed] [Google Scholar]
- Tsuboi A., Terasima T. Rejoining of single breaks of DNA induced by x-rays in mammalian cells: effects of metabolic inhibitors. Mol Gen Genet. 1970;108(2):117–128. doi: 10.1007/BF02430518. [DOI] [PubMed] [Google Scholar]
- Villee D. B., Nichols G., Jr, Talbot N. B. Metabolic studies in two boys with classical progeria. Pediatrics. 1969 Feb;43(2):207–216. [PubMed] [Google Scholar]
