Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Apr;70(4):1012–1016. doi: 10.1073/pnas.70.4.1012

Concanavalin A Derivatives with Altered Biological Activities

Gary R Gunther 1, John L Wang 1, Ichiro Yahara 1, Bruce A Cunningham 1, Gerald M Edelman 1
PMCID: PMC433414  PMID: 4515602

Abstract

Chemical derivatization of tetrameric concanavalin A (Con A) with succinic anhydride or acetic anhydride converts the protein to a dimeric molecule without altering its carbohydrate-binding specificity. At low concentrations, the dose-response curves for the mitogenic stimulation of mouse spleen cells by native Con A and succinyl-Con A are similar. Above lectin concentrations of 10 μg/ml, however, the response to Con A is diminished, while that for succinyl-Con A does not decrease until much higher doses are reached. We have attributed this difference mainly to the higher rate of cell death induced by the native Con A molecule. Con A also shows a greater capacity than succinyl-Con A to agglutinate sheep erythrocytes and to inhibit cap formation by immunoglobulin receptors on spleen cells. Moreover, at low concentrations, Con A induced its glycoprotein receptors to form caps, but succinyl-Con A did not induce cap formation. Addition of antibodies directed against Con A to succinyl-Con A bound on cells restored the properties of agglutination, inhibition of immunoglobulin receptor cap formation, and induction of cap formation by Con A receptors. Similar results have been obtained for acetyl-Con A. These data suggest that the altered biological activities of succinyl-Con A and acetyl-Con A are attributable to their reduced valence.

Keywords: lectins, lymphocyte stimulation, membrane receptors

Full text

PDF
1012

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berlin R. D. Effect of concanavalin A on phagocytosis. Nat New Biol. 1972 Jan 12;235(54):44–45. doi: 10.1038/newbio235044a0. [DOI] [PubMed] [Google Scholar]
  2. Berlin R. D., Ukena T. E. Effect of colchicine and vinblastine on the agglutination of polymorpho-nuclear leucocytes by concanavalin A. Nat New Biol. 1972 Jul 26;238(82):120–122. doi: 10.1038/newbio238120a0. [DOI] [PubMed] [Google Scholar]
  3. Cebra J. J., Goldstein G. Chromatographic purification of tetramethylrhodamine-immune globulin conjugates and their use in the cellular localization of rabbit gamma-globulin polypeptide chains. J Immunol. 1965 Aug;95(2):230–245. [PubMed] [Google Scholar]
  4. Colowick S. P., Womack F. C. Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis. J Biol Chem. 1969 Feb 25;244(4):774–777. [PubMed] [Google Scholar]
  5. Cunningham B. A., Wang J. L., Pflumm M. N., Edelman G. M. Isolation and proteolytic cleavage of the intact subunit of concanavalin A. Biochemistry. 1972 Aug 15;11(17):3233–3239. doi: 10.1021/bi00767a016. [DOI] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Edelman G. M., Cunningham B. A., Reeke G. N., Jr, Becker J. W., Waxdal M. J., Wang J. L. The covalent and three-dimensional structure of concanavalin A. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2580–2584. doi: 10.1073/pnas.69.9.2580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edelman G. M., Millette C. F. Molecular probes of spermatozoan structures. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2436–2440. doi: 10.1073/pnas.68.10.2436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fanger M. W., Hart D. A., Wells J. V., Nisonoff A. Requirement for cross-linkage in the stimulation of transformation of rabbit peripheral lymphocytes by antiglobulin reagents. J Immunol. 1970 Dec;105(6):1484–1492. [PubMed] [Google Scholar]
  10. Feldmann M., Easten A. The relationship between antigenic structure and the requirement for thymus-derived cells in the immune response. J Exp Med. 1971 Jul 1;134(1):103–119. doi: 10.1084/jem.134.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inbar M., Sachs L. Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1418–1425. doi: 10.1073/pnas.63.4.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JANOWSKY D. S., ROSENAU W., MOON H. D. ISOLATION OF IMMUNOLOGICALLY COMPETENT LYMPHOCYTES FROM SENSITIZED MOUSE SPLEENS. Proc Soc Exp Biol Med. 1964 Jan;115:77–79. doi: 10.3181/00379727-115-28835. [DOI] [PubMed] [Google Scholar]
  13. McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
  14. Milthorp P., Forsdyke D. R. Inhibition of lymphocyte activation at high ratios of concanavalin A to serum depends on complement. Nature. 1970 Sep 26;227(5265):1351–1352. doi: 10.1038/2271351a0. [DOI] [PubMed] [Google Scholar]
  15. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Novogrodsky A., Katchalski E. Lymphocyte transformation induced by concanavalin A and its reversion by methyl-alpha-D-mannopyranoside. Biochim Biophys Acta. 1971 Jan 28;228(2):579–583. doi: 10.1016/0005-2787(71)90064-5. [DOI] [PubMed] [Google Scholar]
  17. Powell A. E., Leon M. A. Reversible interaction of human lymphocytes with the mitogen concanavalin A. Exp Cell Res. 1970 Oct;62(2):315–325. doi: 10.1016/0014-4827(70)90560-4. [DOI] [PubMed] [Google Scholar]
  18. Scott R. E., Marchesi V. T. Structural changes in membranes of transformed lymphocytes demonstrated by freeze-etching. Cell Immunol. 1972 Feb;3(2):301–317. doi: 10.1016/0008-8749(72)90169-4. [DOI] [PubMed] [Google Scholar]
  19. Shiao D. D., Lumry R., Rajender S. Modification of protein properties by change in charge. Succinylated chymotrypsinogen. Eur J Biochem. 1972 Sep 18;29(2):377–385. doi: 10.1111/j.1432-1033.1972.tb01999.x. [DOI] [PubMed] [Google Scholar]
  20. Unanue E. R., Perkins W. D., Karnovsky M. J. Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radioautography. J Exp Med. 1972 Oct 1;136(4):885–906. doi: 10.1084/jem.136.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wang J. L., Cunningham B. A., Edelman G. M. Unusual fragments in the subunit structure of concanavalin A. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1130–1134. doi: 10.1073/pnas.68.6.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Waxdal M. J., Wang J. L., Pflumm M. N., Edelman G. M. Isolation and order of the cyanogen bromide fragments of concanavalin A. Biochemistry. 1971 Aug 31;10(18):3343–3347. doi: 10.1021/bi00794a004. [DOI] [PubMed] [Google Scholar]
  23. Woodruff M. F., Reid B., James K. Effect of antilymphocytic antibody and antibody fragments on human lymphocytes in vitro. Nature. 1967 Aug 5;215(5101):591–594. doi: 10.1038/215591a0. [DOI] [PubMed] [Google Scholar]
  24. Yahara I., Edelman G. M. Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc Natl Acad Sci U S A. 1972 Mar;69(3):608–612. doi: 10.1073/pnas.69.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES