Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Mar 15;91(6):2221–2224. doi: 10.1073/pnas.91.6.2221

Multiple substitutions in the von Willebrand factor gene that mimic the pseudogene sequence.

J C Eikenboom 1, T Vink 1, E Briët 1, J J Sixma 1, P H Reitsma 1
PMCID: PMC43342  PMID: 8134377

Abstract

We have analyzed a type IIB and a type I von Willebrand disease family for the presence of mutations in the region coding for the glycoprotein Ib binding domain of the von Willebrand factor. Since this sequence is also present in the highly homologous von Willebrand factor pseudogene, we have studied genomic DNA as well as cDNA, which was produced from RNA isolated from endothelial cells or platelets. In both families, we have detected multiple consecutive nucleotide substitutions in the 5' end of exon 28 that result in a sequence identical to the von Willebrand factor pseudogene. These substitutions were also found in cDNA, which proves that they are present in the active gene. The occurrence of multiple adjacent substitutions that exactly reflect a part of the sequence of the von Willebrand factor pseudogene is difficult to reconcile with sequential single mutational events. We therefore hypothesize that each of these multiple substitutions arose from one recombinational event between gene and pseudogene.

Full text

PDF
2221

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amor M., Parker K. L., Globerman H., New M. I., White P. C. Mutation in the CYP21B gene (Ile-172----Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1600–1604. doi: 10.1073/pnas.85.5.1600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmann B., Lüke W., Hunsmann G. Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res. 1990 Mar 11;18(5):1309–1309. doi: 10.1093/nar/18.5.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baltimore D. Gene conversion: some implications for immunoglobulin genes. Cell. 1981 Jun;24(3):592–594. doi: 10.1016/0092-8674(81)90082-9. [DOI] [PubMed] [Google Scholar]
  4. Bonthron D., Orr E. C., Mitsock L. M., Ginsburg D., Handin R. I., Orkin S. H. Nucleotide sequence of pre-pro-von Willebrand factor cDNA. Nucleic Acids Res. 1986 Sep 11;14(17):7125–7127. doi: 10.1093/nar/14.17.7125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng K. C., Smith G. R. Cutting of chi-like sequences by the RecBCD enzyme of Escherichia coli. J Mol Biol. 1987 Apr 20;194(4):747–750. doi: 10.1016/0022-2836(87)90252-x. [DOI] [PubMed] [Google Scholar]
  6. Cooney K. A., Lyons S. E., Ginsburg D. Functional analysis of a type IIB von Willebrand disease missense mutation: increased binding of large von Willebrand factor multimers to platelets. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2869–2872. doi: 10.1073/pnas.89.7.2869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooney K. A., Nichols W. C., Bruck M. E., Bahou W. F., Shapiro A. D., Bowie E. J., Gralnick H. R., Ginsburg D. The molecular defect in type IIB von Willebrand disease. Identification of four potential missense mutations within the putative GpIb binding domain. J Clin Invest. 1991 Apr;87(4):1227–1233. doi: 10.1172/JCI115123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donnér M., Kristoffersson A. C., Berntorp E., Scheibel E., Thorsen S., Dahlbäck B., Nilsson I. M., Holmberg L. Two new candidate mutations in type IIA von Willebrand's disease (Arg834-->Gly, Gly846-->Arg) and one polymorphism (Tyr821-->Cys) in the A2 region of the von Willebrand factor. Eur J Haematol. 1993 Jul;51(1):38–44. [PubMed] [Google Scholar]
  9. Donnér M., Kristoffersson A. C., Lenk H., Scheibel E., Dahlbäck B., Nilsson I. M., Holmberg L. Type IIB von Willebrand's disease: gene mutations and clinical presentation in nine families from Denmark, Germany and Sweden. Br J Haematol. 1992 Sep;82(1):58–65. doi: 10.1111/j.1365-2141.1992.tb04594.x. [DOI] [PubMed] [Google Scholar]
  10. Eikenboom J. C., Ploos van Amstel H. K., Reitsma P. H., Briët E. Mutations in severe, type III von Willebrand's disease in the Dutch population: candidate missense and nonsense mutations associated with reduced levels of von Willebrand factor messenger RNA. Thromb Haemost. 1992 Oct 5;68(4):448–454. [PubMed] [Google Scholar]
  11. Eikenboom J. C., Reitsma P. H., Peerlinck K. M., Briët E. Recessive inheritance of von Willebrand's disease type I. Lancet. 1993 Apr 17;341(8851):982–986. doi: 10.1016/0140-6736(93)91070-3. [DOI] [PubMed] [Google Scholar]
  12. Ginsburg D., Sadler J. E. von Willebrand disease: a database of point mutations, insertions, and deletions. For the Consortium on von Willebrand Factor Mutations and Polymorphisms, and the Subcommittee on von Willebrand Factor of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1993 Feb 1;69(2):177–184. [PubMed] [Google Scholar]
  13. Gorski J., Mach B. Polymorphism of human Ia antigens: gene conversion between two DR beta loci results in a new HLA-D/DR specificity. Nature. 1986 Jul 3;322(6074):67–70. doi: 10.1038/322067a0. [DOI] [PubMed] [Google Scholar]
  14. Haber J. E. Exploring the pathways of homologous recombination. Curr Opin Cell Biol. 1992 Jun;4(3):401–412. doi: 10.1016/0955-0674(92)90005-w. [DOI] [PubMed] [Google Scholar]
  15. Hayashida H., Kuma K., Miyata T. Interchromosomal gene conversion as a possible mechanism for explaining divergence patterns of ZFY-related genes. J Mol Evol. 1992 Aug;35(2):181–183. doi: 10.1007/BF00183228. [DOI] [PubMed] [Google Scholar]
  16. Higashi Y., Tanae A., Inoue H., Hiromasa T., Fujii-Kuriyama Y. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P-450(C21)] deficiency in humans: possible gene conversion products. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7486–7490. doi: 10.1073/pnas.85.20.7486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holmberg L., Dent J. A., Schneppenheim R., Budde U., Ware J., Ruggeri Z. M. von Willebrand factor mutation enhancing interaction with platelets in patients with normal multimeric structure. J Clin Invest. 1993 May;91(5):2169–2177. doi: 10.1172/JCI116443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoyer L. W., Shainoff J. R. Factor VIII-related protein circulates in normal human plasma as high molecular weight multimers. Blood. 1980 Jun;55(6):1056–1059. [PubMed] [Google Scholar]
  19. Kenter A. L., Birshtein B. K. Chi, a promoter of generalized recombination in lambda phage, is present in immunoglobulin genes. Nature. 1981 Oct 1;293(5831):402–404. doi: 10.1038/293402a0. [DOI] [PubMed] [Google Scholar]
  20. Kobayashi I. Mechanisms for gene conversion and homologous recombination: the double-strand break repair model and the successive half crossing-over model. Adv Biophys. 1992;28:81–133. doi: 10.1016/0065-227x(92)90023-k. [DOI] [PubMed] [Google Scholar]
  21. Lillicrap D., Murray E. W., Benford K., Blanchette V. S., Rivard G. E., Wensley R., Giles A. R. Recurring mutations at CpG dinucleotides in the region of the von Willebrand factor gene encoding the glycoprotein Ib binding domain, in patients with type IIB von Willebrand's disease. Br J Haematol. 1991 Dec;79(4):612–617. doi: 10.1111/j.1365-2141.1991.tb08089.x. [DOI] [PubMed] [Google Scholar]
  22. Mancuso D. J., Tuley E. A., Westfield L. A., Lester-Mancuso T. L., Le Beau M. M., Sorace J. M., Sadler J. E. Human von Willebrand factor gene and pseudogene: structural analysis and differentiation by polymerase chain reaction. Biochemistry. 1991 Jan 8;30(1):253–269. doi: 10.1021/bi00215a036. [DOI] [PubMed] [Google Scholar]
  23. Mancuso D. J., Tuley E. A., Westfield L. A., Worrall N. K., Shelton-Inloes B. B., Sorace J. M., Alevy Y. G., Sadler J. E. Structure of the gene for human von Willebrand factor. J Biol Chem. 1989 Nov 25;264(33):19514–19527. [PubMed] [Google Scholar]
  24. Matsuno Y., Yamashiro Y., Yamamoto K., Hattori Y., Yamamoto K., Ohba Y., Miyaji T. A possible example of gene conversion with a common beta-thalassemia mutation and Chi sequence present in the beta-globin gene. Hum Genet. 1992 Jan;88(3):357–358. doi: 10.1007/BF00197277. [DOI] [PubMed] [Google Scholar]
  25. Piétu G., Ribba A. S., de Paillette L., Chérel G., Lavergne J. M., Bahnak B. R., Meyer D. Molecular study of von Willebrand disease: identification of potential mutations in patients with type IIA and type IIB. Blood Coagul Fibrinolysis. 1992 Aug;3(4):415–421. [PubMed] [Google Scholar]
  26. Powers P. A., Smithies O. Short gene conversions in the human fetal globin gene region: a by-product of chromosome pairing during meiosis? Genetics. 1986 Feb;112(2):343–358. doi: 10.1093/genetics/112.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Randi A. M., Rabinowitz I., Mancuso D. J., Mannucci P. M., Sadler J. E. Molecular basis of von Willebrand disease type IIB. Candidate mutations cluster in one disulfide loop between proposed platelet glycoprotein Ib binding sequences. J Clin Invest. 1991 Apr;87(4):1220–1226. doi: 10.1172/JCI115122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ruggeri Z. M., Zimmerman T. S. von Willebrand factor and von Willebrand disease. Blood. 1987 Oct;70(4):895–904. [PubMed] [Google Scholar]
  29. Smith G. R. Chi hotspots of generalized recombination. Cell. 1983 Oct;34(3):709–710. doi: 10.1016/0092-8674(83)90525-1. [DOI] [PubMed] [Google Scholar]
  30. Zhang Z. P., Blombäck M., Nyman D., Anvret M. Mutations of von Willebrand factor gene in families with von Willebrand disease in the Aland Islands. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7937–7940. doi: 10.1073/pnas.90.17.7937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhang Z. P., Lindstedt M., Falk G., Blombäck M., Egberg N., Anvret M. Nonsense mutations of the von Willebrand factor gene in patients with von Willebrand disease type III and type I. Am J Hum Genet. 1992 Oct;51(4):850–858. [PMC free article] [PubMed] [Google Scholar]
  32. de Groot P. G., Federici A. B., de Boer H. C., d'Alessio P., Mannucci P. M., Sixma J. J. von Willebrand factor synthesized by endothelial cells from a patient with type IIB von Willebrand disease supports platelet adhesion normally but has an increased affinity for platelets. Proc Natl Acad Sci U S A. 1989 May;86(10):3793–3797. doi: 10.1073/pnas.86.10.3793. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES