Abstract
The N protein of bacteriophage lambda is a positive regulator of early λ gene expression. In a λtrp transducing phage, λtrp46Nam, the synthesis of trp enzymes in vivo is also dependent on the presence of active N protein. The DNA of this phage has been used in a protein-synthesizing system in vitro to develop a biochemical assay for the activity of the N protein. From the following observations it appears that it is the N protein itself that stimulates trp enzyme synthesis in vitro. An activity that stimulates trp enzyme synthesis can be made in vitro by λN+ DNA but not by λNam DNA. This activity can also be detected in extracts of induced λN+ lysogens but not of λNam lysogens. Furthermore, the activity is temperature sensitive in similar extracts of λNts lysogens. No such activity is detectable in extracts of induced lysogens of λimm21. This phage makes all λ-coded gene products outside the immunity region, but lacks an N protein activity able to substitute for Nλ protein in vivo. Our experiments also show that the action of N protein is inhibited by the cI repressor protein in vivo as it is in vivo.
Keywords: N protein assay, temperature-sensitive N mutant protein, Nλ and N21 specificity, λ repressor
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Englander S. W., Crowe D. Rapid microdialysis and hydrogen exchange. Anal Biochem. 1965 Sep;12(3):579–584. doi: 10.1016/0003-2697(65)90225-3. [DOI] [PubMed] [Google Scholar]
- Greenblatt J. Regulation of the expression of the N gene of bacteriophage lambda. Proc Natl Acad Sci U S A. 1973 Feb;70(2):421–424. doi: 10.1073/pnas.70.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenblatt J., Schleif R. Arabinose C protein: regulation of the arabinose operon in vitro. Nat New Biol. 1971 Oct 6;233(40):166–170. doi: 10.1038/newbio233166a0. [DOI] [PubMed] [Google Scholar]
- Grodzicker T., Arditti R. R., Eisen H. Establishment of repression by lambdoid phage in catabolite activator protein and adenylate cyclase mutants of Escherichia coli. Proc Natl Acad Sci U S A. 1972 Feb;69(2):366–370. doi: 10.1073/pnas.69.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harwood J., Smith D. H. Catabolite repression of chloramphenicol acetyl transferase synthesis in E. coli K12. Biochem Biophys Res Commun. 1971 Jan 8;42(1):57–62. doi: 10.1016/0006-291x(71)90361-5. [DOI] [PubMed] [Google Scholar]
- Ito J., Cox E. C., Yanofsky C. Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: purification and characterization of component I. J Bacteriol. 1969 Feb;97(2):725–733. doi: 10.1128/jb.97.2.725-733.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito J., Yanofsky C. Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: Comparative studies on the complex and the subunits. J Bacteriol. 1969 Feb;97(2):734–742. doi: 10.1128/jb.97.2.734-742.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luzzati D. Regulation of lambda exonuclease synthesis: role of the N gene product and lambda repressor. J Mol Biol. 1970 Apr 28;49(2):515–519. doi: 10.1016/0022-2836(70)90261-5. [DOI] [PubMed] [Google Scholar]
- Pearson M. L. The role of adenosine 3',5'-cyclic monophosphate in the growth of bacteriophage lambda. Virology. 1972 Aug;49(2):605–609. doi: 10.1016/0042-6822(72)90513-2. [DOI] [PubMed] [Google Scholar]
- Portier M. M., Marcaud L., Cohen A., Gros F. Mechanism of transcription in the N operon of bacteriophage lambda. Mol Gen Genet. 1972;117(1):72–81. doi: 10.1007/BF00268839. [DOI] [PubMed] [Google Scholar]
- Pouwels P. H., Van Rotterdam J. In vitro synthesis of enzymes of the tryptophan operon of Escherichia coli. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1786–1790. doi: 10.1073/pnas.69.7.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spiegelman S., Haruna I., Holland I. B., Beaudreau G., Mills D. The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc Natl Acad Sci U S A. 1965 Sep;54(3):919–927. doi: 10.1073/pnas.54.3.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Travers A. Control of transcription in bacteria. Nat New Biol. 1971 Jan 20;229(3):69–74. doi: 10.1038/newbio229069a0. [DOI] [PubMed] [Google Scholar]
- Wetekam W., Staack K., Ehring R. Relief of polarity in DNA-dependent cell-free synthesis of enzymes of the galactose operon of Escherichia coli. Mol Gen Genet. 1972;116(3):258–276. doi: 10.1007/BF00269770. [DOI] [PubMed] [Google Scholar]
- Yanofsky C., Ito J. Nonsense codons and polarity in the tryptophan operon. J Mol Biol. 1966 Nov 14;21(2):313–334. doi: 10.1016/0022-2836(66)90102-1. [DOI] [PubMed] [Google Scholar]