Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Apr;70(4):1083–1087. doi: 10.1073/pnas.70.4.1083

Replication of DNA in Mammalian Chromosomes: Isolation of Replicating Segments*

J Herbert Taylor 1
PMCID: PMC433430  PMID: 4268701

Abstract

From Chinese hamster cells, blocked at the beginning of the S phase by treatment with fluorodeoxyuridine and pulse-labeled with [3H]thymidine, one can release segments of native DNA containing template polyuncleotide chains and the most recently replicated DNA. The segments, which can be released without shear by lysis at temperatures below the melting point for the double helix, can be separated from both the nascent single chains (Okazaki pieces) and the long strands of native DNA in sodium perchlorate gradients. These 26S segments are equivalent to about 6 μm of native DNA, but may be replication forks rather than linear pieces.

Keywords: template DNA, replication fork, [3H]thymidine, isokinetic gradients, Chinese hamster cells

Full text

PDF
1083

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bostock C. J., Prescott D. M. Buoyant density of DNA synthesized at different stages of S phase in Chinese hamster cells. Exp Cell Res. 1971 Feb;64(2):481–484. doi: 10.1016/0014-4827(71)90106-6. [DOI] [PubMed] [Google Scholar]
  2. Champoux J. J., Dulbecco R. An activity from mammalian cells that untwists superhelical DNA--a possible swivel for DNA replication (polyoma-ethidium bromide-mouse-embryo cells-dye binding assay). Proc Natl Acad Sci U S A. 1972 Jan;69(1):143–146. doi: 10.1073/pnas.69.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Okazaki R., Arisawa M., Sugino A. Slow joining of newly replicated DNA chains in DNA polymerase I-deficient Escherichia coli mutants. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2954–2957. doi: 10.1073/pnas.68.12.2954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Sakabe K., Okazaki R. A unique property of the replicating region of chromosomal DNA. Biochim Biophys Acta. 1966 Dec 21;129(3):651–654. doi: 10.1016/0005-2787(66)90088-8. [DOI] [PubMed] [Google Scholar]
  5. Schandl E. K., Taylor J. H. Early events in the replication and integration of DNA into mammalian chromosomes. Biochem Biophys Res Commun. 1969 Feb 7;34(3):291–300. doi: 10.1016/0006-291x(69)90830-4. [DOI] [PubMed] [Google Scholar]
  6. Schandl E. K., Taylor J. H. Oligodeoxyribonucleotides from pulse-labeled mammalian cells. Biochim Biophys Acta. 1971 Feb 11;228(3):595–609. doi: 10.1016/0005-2787(71)90724-6. [DOI] [PubMed] [Google Scholar]
  7. Sugino A., Okazaki R. Mechanism of DNA chain growth. Vii. Direction and rate of growth of T4 nascent short DNA chains. J Mol Biol. 1972 Feb 28;64(1):61–85. doi: 10.1016/0022-2836(72)90321-x. [DOI] [PubMed] [Google Scholar]
  8. TJIO J. H., PUCK T. T. Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture. J Exp Med. 1958 Aug 1;108(2):259–268. doi: 10.1084/jem.108.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Taylor J. H., Myers T. L., Cunningham H. L. Programmed synthesis of deoxyribonucleic acid during the cell cycle. In Vitro. 1971 Jan-Feb;6(4):309–321. doi: 10.1007/BF02625945. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES