Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Apr;70(4):1151–1155. doi: 10.1073/pnas.70.4.1151

The 3′-Terminal Nucleotide Sequences of Bacteriophage λ DNA

Paul H Weigel *, Paul T Englund *, Kenneth Murray *, Robert W Old *
PMCID: PMC433446  PMID: 4515613

Abstract

Analyses of radioactive oligonucleotides in endonuclease digests of 3′-terminally labeled λ DNA revealed the 3′ terminal sequence -GTTACG for the l strand and -ACCCGCG for the r strand. These sequences, together with those previously known for the 5′ cohesive ends, provide a total of 25 known base-pairs in the vicinity of the termini. When the cohesive ends are paired, the sequence between the nicks can be bisected by a 2-fold rotational axis of symmetry. Five of the first eight base-pairs, on either side of the axis, are rotationally symmetric. This symmetry may be involved in the recognition of the site by an enzyme responsible for formation of the cohesive ends.

Keywords: ter function, recognition site, rotational symmetry, coliphage

Full text

PDF
1151

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arber W., Linn S. DNA modification and restriction. Annu Rev Biochem. 1969;38:467–500. doi: 10.1146/annurev.bi.38.070169.002343. [DOI] [PubMed] [Google Scholar]
  2. Bernardi G. Mechanism of action and structure of acid deoxyribonuclease. Adv Enzymol Relat Areas Mol Biol. 1968;31:1–49. doi: 10.1002/9780470122761.ch1. [DOI] [PubMed] [Google Scholar]
  3. Bram S., Tougard P. Polymorphism of natural DNA. Nat New Biol. 1972 Oct 4;239(92):128–131. doi: 10.1038/newbio239128a0. [DOI] [PubMed] [Google Scholar]
  4. Brezinski D. P., Wang J. C. The 3'-terminal nucleotide sequences of lambda DNA. Biochem Biophys Res Commun. 1973 Jan 23;50(2):398–404. doi: 10.1016/0006-291x(73)90854-1. [DOI] [PubMed] [Google Scholar]
  5. Carrara M., Bernardi G. Studies on acid deoxyribonuclease. V. The oligonucleotides obtained from deoxyribonucleic acid and their 3'-phosphate termini. Biochemistry. 1968 Mar;7(3):1121–1131. doi: 10.1021/bi00843a033. [DOI] [PubMed] [Google Scholar]
  6. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  7. Crick F. General model for the chromosomes of higher organisms. Nature. 1971 Nov 5;234(5323):25–27. doi: 10.1038/234025a0. [DOI] [PubMed] [Google Scholar]
  8. Englund P. T. The 3'-terminal nucleotide sequences of T7 DNA. J Mol Biol. 1972 May 14;66(2):209–224. doi: 10.1016/0022-2836(72)90474-3. [DOI] [PubMed] [Google Scholar]
  9. Hedgpeth J., Goodman H. M., Boyer H. W. DNA nucleotide sequence restricted by the RI endonuclease. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3448–3452. doi: 10.1073/pnas.69.11.3448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hershey A. D., Burgi E., Ingraham L. COHESION OF DNA MOLECULES ISOLATED FROM PHAGE LAMBDA. Proc Natl Acad Sci U S A. 1963 May;49(5):748–755. doi: 10.1073/pnas.49.5.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirsh D. Tryptophan transfer RNA as the UGA suppressor. J Mol Biol. 1971 Jun 14;58(2):439–458. doi: 10.1016/0022-2836(71)90362-7. [DOI] [PubMed] [Google Scholar]
  12. JOSSE J., KAISER A. D., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J Biol Chem. 1961 Mar;236:864–875. [PubMed] [Google Scholar]
  13. Kelly T. J., Jr, Smith H. O. A restriction enzyme from Hemophilus influenzae. II. J Mol Biol. 1970 Jul 28;51(2):393–409. doi: 10.1016/0022-2836(70)90150-6. [DOI] [PubMed] [Google Scholar]
  14. Mousset S., Thomas R. Ter, a function which generates the ends of the mature lambda chromosome. Nature. 1969 Jan 18;221(5177):242–244. doi: 10.1038/221242a0. [DOI] [PubMed] [Google Scholar]
  15. Murray K. Nucleotide 'maps' of digests of deoxyribonucleic acid. Biochem J. 1970 Aug;118(5):831–841. doi: 10.1042/bj1180831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murray K. Nucleotide sequence analysis with polynucleotide kinase and nucleotide "mapping" methods. 5'-Terminal sequences of deoxyribonucleic acid from bacteriophages lambda and 424. Biochem J. 1973 Mar;131(3):569–582. doi: 10.1042/bj1310569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Padmanabhan R., Wu R. Nucleotide sequence analysis of DNA. IV. Complete nucleotide sequence of the left-hand cohesive end of coliphage 186 DNA. J Mol Biol. 1972 Apr 14;65(3):447–467. doi: 10.1016/0022-2836(72)90201-x. [DOI] [PubMed] [Google Scholar]
  18. Paetkau V., Coulter M. B., Flintoff W. F., Morgan A. R. Thymine-guanine base pairing during transcription of polydeoxypyrimidines in vitro. J Mol Biol. 1972 Nov 14;71(2):293–306. doi: 10.1016/0022-2836(72)90352-x. [DOI] [PubMed] [Google Scholar]
  19. Parks J. S., Gottesman M., Shimada K., Weisberg R. A., Perlman R. L., Pastan I. Isolation of the gal repressor. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1891–1895. doi: 10.1073/pnas.68.8.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sanger F., Brownlee G. G., Barrell B. G. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. doi: 10.1016/s0022-2836(65)80104-8. [DOI] [PubMed] [Google Scholar]
  21. Sobell H. M., Jain S. C. Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications. J Mol Biol. 1972 Jul 14;68(1):21–34. doi: 10.1016/0022-2836(72)90259-8. [DOI] [PubMed] [Google Scholar]
  22. Southern E. M., Mitchell A. R. Chromatography of nucleic acid digests on thin layers of cellulose impregnated with polyethyleneimine. Biochem J. 1971 Jul;123(4):613–617. doi: 10.1042/bj1230613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Székely M., Sanger F. Use of polynucleotide kinase in fingerprinting non-radioactive nucleic acids. J Mol Biol. 1969 Aug 14;43(3):607–617. doi: 10.1016/0022-2836(69)90362-3. [DOI] [PubMed] [Google Scholar]
  24. Varmus H. E., Perlman R. L., Pastan I. Regulation of lac messenger ribonucleic acid synthesis by cyclic adenosine 3',5'-monophosphate and glucose. J Biol Chem. 1970 May 10;245(9):2259–2267. [PubMed] [Google Scholar]
  25. Wang J. C., Kaiser A. D. Evidence that the cohesive ends of mature lambda DNA are generated by the gene A product. Nat New Biol. 1973 Jan 3;241(105):16–17. doi: 10.1038/newbio241016a0. [DOI] [PubMed] [Google Scholar]
  26. Wu R., Kaiser A. D. Structure and base sequence in the cohesive ends of bacteriophage lambda DNA. J Mol Biol. 1968 Aug 14;35(3):523–537. doi: 10.1016/s0022-2836(68)80012-9. [DOI] [PubMed] [Google Scholar]
  27. Wu R., Taylor E. Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J Mol Biol. 1971 May 14;57(3):491–511. doi: 10.1016/0022-2836(71)90105-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES