Abstract
Apparent weight-average molecular weights of hemoglobin A and hemoglobin S were measured at high concentrations by equilibrium ultracentrifugation. Carbonmonoxy-hemoglobin S appears to exist as a solution of unassociated molecules, as do carbonmonoxy-and deoxy-hemoglobin A. Deoxy-hemoglobin S, however, exists in a gel-like state at concentrations above 14 g/dl, but no aggregates smaller than the gel were observed in solutions that were in equilibrium with the gel. Carbamoylation of hemoglobin S produced a solution of unaggregated molecules, as did cooling of uncarbamoylated hemoglobin S to 5°. It is concluded that the gel of hemoglobin S is formed in a stoichiometrically concerted manner, and that the size of the smallest stable aggregate is greater than 20 hemoglobin molecules.
Keywords: hemoglobin A, sickle-cell anemia, ultracentrifugation, protein association
Full text
PDF![1506](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b6/433530/1ee558c26c44/pnas00068-0220.png)
![1507](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b6/433530/559f67634aef/pnas00068-0221.png)
![1508](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b6/433530/1f25859722b1/pnas00068-0222.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLISON A. C. Properties of sickle-cell haemoglobin. Biochem J. 1957 Feb;65(2):212–219. doi: 10.1042/bj0650212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ansevin A. T., Roark D. E., Yphantis D. A. Improved ultracentrifuge cells for high-speed sedimentation equilibrium studies with interference optics. Anal Biochem. 1970 Mar;34:237–261. doi: 10.1016/0003-2697(70)90103-x. [DOI] [PubMed] [Google Scholar]
- BENESCH R., MACDUFF G., BENESCH R. E. DETERMINATION OF OXYGEN EQUILIBRIA WITH A VERSATILE NEW TONOMETER. Anal Biochem. 1965 Apr;11:81–87. doi: 10.1016/0003-2697(65)90045-x. [DOI] [PubMed] [Google Scholar]
- BESSIS M., NOMARSKI G., THIERY J. P., BRETON-GORIUS J. Etude sur la falciformation des globules rouges au microscope polarisant et au microscope électronique. II. L'intérieru du globule; comparaison avec les cristaux intra-globulaires. Rev Hematol. 1958 Apr-Jun;13(2):249–270. [PubMed] [Google Scholar]
- Bertles J. F., Rabinowitz R., Döbler J. Hemoglobin interaction: modification of solid phase composition in the sickling phenomenon. Science. 1970 Jul 24;169(3943):375–377. doi: 10.1126/science.169.3943.375. [DOI] [PubMed] [Google Scholar]
- Cerami A., Manning J. M. Potassium cyanate as an inhibitor of the sickling of erythrocytes in vitro. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1180–1183. doi: 10.1073/pnas.68.6.1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRIS J. W. Studies on the destruction of red blood cells. VIII. Molecular orientation in sickle cell hemoglobin solutions. Proc Soc Exp Biol Med. 1950 Oct;75(1):197–201. doi: 10.3181/00379727-75-18144. [DOI] [PubMed] [Google Scholar]
- Kellett G. L., Schachman H. K. Dissociation of hemoglobin into subunits. Monomer formation and the influence of ligands. J Mol Biol. 1971 Aug 14;59(3):387–399. doi: 10.1016/0022-2836(71)90306-8. [DOI] [PubMed] [Google Scholar]
- Magdoff-Fairchild B., Swerdlow P. H., Bertles J. F. Intermolecular organization of deoxygenated sickle haemoglobin determined by x-ray diffraction. Nature. 1972 Sep 22;239(5369):217–219. doi: 10.1038/239217a0. [DOI] [PubMed] [Google Scholar]
- Murayama M. Molecular mechanism of red cell "sickling". Science. 1966 Jul 8;153(3732):145–149. doi: 10.1126/science.153.3732.145. [DOI] [PubMed] [Google Scholar]
- PAULING L., ITANO H. A. Sickle cell anemia a molecular disease. Science. 1949 Nov 25;110(2865):543–548. doi: 10.1126/science.110.2865.543. [DOI] [PubMed] [Google Scholar]
- PERUTZ M. F., MITCHISON J. M. State of haemoglobin in sickle-cell anaemia. Nature. 1950 Oct 21;166(4225):677–679. doi: 10.1038/166677a0. [DOI] [PubMed] [Google Scholar]
- PERUTZ R. R., LIQUORI A. M., EIRICH F. X-ray and solubility studies of the haemoglobin of sickle-cell anaemia patients. Nature. 1951 Jun 9;167(4258):929–931. doi: 10.1038/167929a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Lehmann H. Molecular pathology of human haemoglobin. Nature. 1968 Aug 31;219(5157):902–909. doi: 10.1038/219902a0. [DOI] [PubMed] [Google Scholar]
- Roark D. E., Yphantis D. A. Studies of self-associating systems by equilibrium ultracentrifugation. Ann N Y Acad Sci. 1969 Nov 7;164(1):245–278. doi: 10.1111/j.1749-6632.1969.tb14043.x. [DOI] [PubMed] [Google Scholar]
- STEINER R. F. Reversible association processes of globular proteins. I. Insulin. Arch Biochem Biophys. 1952 Aug;39(2):333–354. doi: 10.1016/0003-9861(52)90344-5. [DOI] [PubMed] [Google Scholar]
- STEINHARDT J., ZAISER E. M. Hydrogen ion equilibria in native and denatured proteins. Adv Protein Chem. 1955;10:151–226. doi: 10.1016/s0065-3233(08)60105-9. [DOI] [PubMed] [Google Scholar]
- Van Holde K. E., Rossetti G. P. A sedimentation equilibrium study of the association of purine in aqueous solutions. Biochemistry. 1967 Jul;6(7):2189–2194. doi: 10.1021/bi00859a041. [DOI] [PubMed] [Google Scholar]
- White J. G. The fine structure of sickled hemoglobin in situ. Blood. 1968 May;31(5):561–579. [PubMed] [Google Scholar]
- Willimas R. C., Jr A laser light source for the analytical ultracentrifuge. Anal Biochem. 1972 Jul;48(1):164–171. doi: 10.1016/0003-2697(72)90180-7. [DOI] [PubMed] [Google Scholar]
- YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]