Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 May;70(5):1521–1525. doi: 10.1073/pnas.70.5.1521

Differential Transport of Protein in Axons: Comparison Between the Sciatic Nerve and Dorsal Columns of Cats

Larry E Anderson 1, William O McClure 1
PMCID: PMC433534  PMID: 4514320

Abstract

Fast axoplasmic transport was studied in dorsal root ganglion cells of the cat. Proteins carried in the fast axoplasmic flow were labeled after an intraganglionic injection of L-[4,5-3H]leucine. The rate of transport was 380 ± 26 mm/day in both the central and peripheral branches of the bifurcating axons that arise from cells of the dorsal root ganglion. The amount of radioactivity transported centrally, through the dorsal roots into the spinal cord, was about 50% of that moving peripherally, through the sensory fibers of the sciatic nerve. Labeled material appears to be transported principally in a bound form, as 70-80% of the radioactivity was insoluble in 0.01 M potassium phosphate buffer at pH 7.4. With multiple extractions, a fractionation procedure was developed by which 94-96% of the total transported radioactivity could be solubilized. The proteins carried by fast axoplasmic transport through the dorsal columns and through the sciatic nerve were compared by electrophoresis of extracted fractions on Na dodecyl sulfate-polyacrylamide gels. Different patterns of radioactivity are seen in the electrophoretograms, suggesting that the cells of the dorsal root ganglion may possess the ability to commit different proteins to transport through two branches of a single bifurcating axon.

Keywords: axoplasmic transport, tissue extraction, Na dodecyl sulfate-polyacrylamide gel electrophoresis

Full text

PDF
1521

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E., McClure W. O. An improved scintillation cocktail of high-solubilizing power. Anal Biochem. 1973 Jan;51(1):173–179. doi: 10.1016/0003-2697(73)90465-x. [DOI] [PubMed] [Google Scholar]
  2. Anker H. S. A solubilizable acrylamide gel for electrophoresis. FEBS Lett. 1970 Apr 16;7(3):293–293. doi: 10.1016/0014-5793(70)80185-5. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. Dale H. H. On some numerical comparisons of the centripetal and centrifugal medullated nerve-fibres arising in the spinal ganglia of the mammal. J Physiol. 1900 Feb 2;25(3):196–206.1. doi: 10.1113/jphysiol.1900.sp000788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duggan A. W., Johnston G. A. Glutamate and related amino acids in cat spinal roots, dorsal root ganglia and peripheral nerves. J Neurochem. 1970 Aug;17(8):1205–1208. doi: 10.1111/j.1471-4159.1970.tb03369.x. [DOI] [PubMed] [Google Scholar]
  6. GLEES P., SOLER J. Fibre content of the posterior column and synaptic connections of nucleus gracilis. Z Zellforsch Mikrosk Anat. 1951;36(4):381–400. doi: 10.1007/BF00335070. [DOI] [PubMed] [Google Scholar]
  7. Ha H. Axonal bifurcation in the dorsal root ganglion of the cat: a light and electron microscopic study. J Comp Neurol. 1970 Oct;140(2):227–240. doi: 10.1002/cne.901400206. [DOI] [PubMed] [Google Scholar]
  8. Hendrickson A. Electron microscopic radioautography: identification of origin of synaptic terminals in normal nervous tissue. Science. 1969 Jul 11;165(3889):194–196. doi: 10.1126/science.165.3889.194. [DOI] [PubMed] [Google Scholar]
  9. Johnson J. L., Aprison M. H. The distribution of glutamic acid, a transmitter candidate, and other amino acids in the dorsal sensory neuron of the cat. Brain Res. 1970 Dec 1;24(2):285–292. doi: 10.1016/0006-8993(70)90107-1. [DOI] [PubMed] [Google Scholar]
  10. Lasek R. Axoplasmic transport in cat dorsal root ganglion cells: as studied with [3-H]-L-leucine. Brain Res. 1968 Mar;7(3):360–377. doi: 10.1016/0006-8993(68)90003-6. [DOI] [PubMed] [Google Scholar]
  11. Lenard J. Protein and glycolipid components of human erythrocyte membranes. Biochemistry. 1970 Mar 3;9(5):1129–1132. doi: 10.1021/bi00807a012. [DOI] [PubMed] [Google Scholar]
  12. MAYNARD D. M., MAYNARD E. A. Thoracic neurosecretory structures in Brachyura. III. Microanatomy of peripheral structures. Gen Comp Endocrinol. 1962 Feb;2:12–28. doi: 10.1016/0016-6480(62)90024-2. [DOI] [PubMed] [Google Scholar]
  13. MAYNARD D. M. Thoracic neurosecretory structures in brachyura. II. Secretory neurons. Gen Comp Endocrinol. 1961 Sep;1:237–263. doi: 10.1016/0016-6480(61)90033-8. [DOI] [PubMed] [Google Scholar]
  14. McEwen B. S., Grafstein B. Fast and slow components in axonal transport of protein. J Cell Biol. 1968 Sep;38(3):494–508. doi: 10.1083/jcb.38.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miledi R., Slater C. R. On the degeneration of rat neuromuscular junctions after nerve section. J Physiol. 1970 Apr;207(2):507–528. doi: 10.1113/jphysiol.1970.sp009076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  17. Ochs S., Johnson J. Fast and slow phases of axoplasmic flow in ventral root nerve fibres. J Neurochem. 1969 Jun;16(3):845–853. doi: 10.1111/j.1471-4159.1969.tb08972.x. [DOI] [PubMed] [Google Scholar]
  18. Ochs S., Ranish N. Characteristics of the fast transport system in mammalian nerve fibers. J Neurobiol. 1969;1(2):247–261. doi: 10.1002/neu.480010211. [DOI] [PubMed] [Google Scholar]
  19. Ochs S., Sabri M. I., Johnson J. Fast transport system of materials in mammalian nerve fibers. Science. 1969 Feb 14;163(3868):686–687. doi: 10.1126/science.163.3868.686. [DOI] [PubMed] [Google Scholar]
  20. Periśić M., Cuénod M. Synaptic transmission depressed by colchicine blockade of axoplasmic flow. Science. 1972 Mar 10;175(4026):1140–1142. doi: 10.1126/science.175.4026.1140. [DOI] [PubMed] [Google Scholar]
  21. Slater C. R. Time course of failure of neuromuscular transmission after motor nerve section. Nature. 1966 Jan 15;209(5020):305–306. doi: 10.1038/209305b0. [DOI] [PubMed] [Google Scholar]
  22. Vesterberg O. Staining of protein zones after isoelectric focusing in polyacrylamide gels. Biochim Biophys Acta. 1971 Aug 27;243(2):345–348. doi: 10.1016/0005-2795(71)90094-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES