Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 May;70(5):1559–1563. doi: 10.1073/pnas.70.5.1559

T7 Early RNAs are Generated by Site-Specific Cleavages

John J Dunn 1, F William Studier 1
PMCID: PMC433542  PMID: 4576024

Abstract

Transcription of T7 DNA by purified Escherichia coli RNA polymerase without added factors produces long RNA molecules that begin near the left end of T7 DNA and terminate at the end of the early region. An endonuclease has been isolated from uninfected E. coli that cleaves these long RNAs at five specific sites to generate RNA molecules essentially the same as the early T7 RNAs observed in vivo. This sizing factor, which may be RNase III, can act during or after RNA synthesis. Synthesis of early RNA chains has been shown to start at three strong initiators, spaced about 150-200 base-pairs apart near the left end of T7 DNA. Thus, the five cleavages by sizing factor generate the five early messenger RNAs of T7 plus three overlapping RNAs from the promoter region. RNA chains that are started at two of the strong initiators begin with A; those started at the third begin with G. A few minor initiators have also been observed, from which only short chains seem to be synthesized. Their locations in T7 DNA have not been mapped. Rho factor does not appear to be needed to generate any of these early T7 RNAs.

Keywords: E. coli RNA polymerase, initiation, termination, RNase III, rho factor

Full text

PDF
1559

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adesnik M., Levinthal C. Synthesis and maturation of ribosomal RNA in Escherichia coli. J Mol Biol. 1969 Dec 14;46(2):281–303. doi: 10.1016/0022-2836(69)90422-7. [DOI] [PubMed] [Google Scholar]
  2. Altman S., Smith J. D. Tyrosine tRNA precursor molecule polynucleotide sequence. Nat New Biol. 1971 Sep 8;233(36):35–39. doi: 10.1038/newbio233035a0. [DOI] [PubMed] [Google Scholar]
  3. Chamberlin M. J., Ring J. Studies of the binding of Escherichia coli RNA polymerase to DNA. V. T7 RNA chain initiation by enzyme-DNA complexes. J Mol Biol. 1972 Sep 28;70(2):221–237. doi: 10.1016/0022-2836(72)90535-9. [DOI] [PubMed] [Google Scholar]
  4. Chamberlin M., McGrath J., Waskell L. New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature. 1970 Oct 17;228(5268):227–231. doi: 10.1038/228227a0. [DOI] [PubMed] [Google Scholar]
  5. Darlix J. L., Sentenac A., Fromageot P. Binding of termination factor RHO to RNA polymerase and DNA. FEBS Lett. 1971 Mar 5;13(3):165–168. doi: 10.1016/0014-5793(71)80226-0. [DOI] [PubMed] [Google Scholar]
  6. Dunn J. J., McAllister W. T., Bautz E. K. Transcription in vitro of T3 DNA by Escherichia coli and T3 RNA polymerases. Analysis of the products in cell-free protein-synthesizing system. Eur J Biochem. 1972 Sep 25;29(3):500–508. doi: 10.1111/j.1432-1033.1972.tb02014.x. [DOI] [PubMed] [Google Scholar]
  7. Dürwald H., Hoffmann-Berling H. Endonuclease-I-deficient and ribonuclease I-deficient Escherichia coli mutants. J Mol Biol. 1968 Jul 14;34(2):331–346. doi: 10.1016/0022-2836(68)90257-x. [DOI] [PubMed] [Google Scholar]
  8. Hyman R. W. Physical mapping of T7 messenger RNA. J Mol Biol. 1971 Oct 28;61(2):369–376. doi: 10.1016/0022-2836(71)90386-x. [DOI] [PubMed] [Google Scholar]
  9. Maitra U., Hurwitz H. The role of DNA in RNA synthesis, IX. Nucleoside triphosphate termini in RNA polymerase products. Proc Natl Acad Sci U S A. 1965 Sep;54(3):815–822. doi: 10.1073/pnas.54.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Murooka Y., Lazzarini R. A. Stimulation of RNA synthesis by two protein factors in extracts of Escherichia coli. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2336–2340. doi: 10.1073/pnas.69.8.2336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ritchie D. A., Thomas C. A., Jr, MacHattie L. A., Wensink P. C. Terminal repetition in non-permuted T3 and T7 bacteriophage DNA molecules. J Mol Biol. 1967 Feb 14;23(3):365–376. doi: 10.1016/s0022-2836(67)80111-6. [DOI] [PubMed] [Google Scholar]
  12. Roberts J. W. Termination factor for RNA synthesis. Nature. 1969 Dec 20;224(5225):1168–1174. doi: 10.1038/2241168a0. [DOI] [PubMed] [Google Scholar]
  13. Robertson H. D., Webster R. E., Zinder N. D. Purification and properties of ribonuclease III from Escherichia coli. J Biol Chem. 1968 Jan 10;243(1):82–91. [PubMed] [Google Scholar]
  14. Siegel R. B., Summers W. C. The process of infection with coliphage T7. 3. Control of phage-specific RNA synthesis in vivo by an early phage gene. J Mol Biol. 1970 Apr 14;49(1):115–123. doi: 10.1016/0022-2836(70)90380-3. [DOI] [PubMed] [Google Scholar]
  15. Sippel A., Hartmann G. Mode of action of rafamycin on the RNA polymerase reaction. Biochim Biophys Acta. 1968 Mar 18;157(1):218–219. doi: 10.1016/0005-2787(68)90286-4. [DOI] [PubMed] [Google Scholar]
  16. Studier F. W. Bacteriophage T7. Science. 1972 Apr 28;176(4033):367–376. doi: 10.1126/science.176.4033.367. [DOI] [PubMed] [Google Scholar]
  17. Studier F. W., Maizel J. V., Jr T7-directed protein synthesis. Virology. 1969 Nov;39(3):575–586. doi: 10.1016/0042-6822(69)90105-6. [DOI] [PubMed] [Google Scholar]
  18. Summers W. C., Siegel R. B. Transcription of late phage RNA by T7 RNA polymerase. Nature. 1970 Dec 19;228(5277):1160–1162. doi: 10.1038/2281160a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES