Abstract
The binding of oxidized as well as reduced coenzyme to some dehydrogenases has been studied under different concentration ratios and temperatures by nuclear magnetic resonance spectroscopy. A significant difference in the spectral behavior between DPN+ and DPNH upon binding is interpreted in terms of fast and slow on-off rates relative to the nuclear magnetic resonance time scale in the binding of these two coenzymes. Significant downfield shifts of DPN+ were observed upon binding, comparable in magnitude to those expected upon opening (destacking) of the coenzymes in the case of chicken-muscle and lobster-tail lactate dehydrogenase (EC 1.1.1.27) and yeast alchol dehydrogenase (EC 1.1.1.1.). A preliminary survey of several other dehydrogenases is consistent with these findings. In the case of 3-phosphoglyceraldehyde dehydrogenase, there is a possibility that the coenzyme exists in the folded form.
Keywords: cofactor-enzyme interaction, NMR spectroscopy, kinetics of binding
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dahlquist F. W., Raftery M. A. A nuclear magnetic resonance study of association equilibria and enzyme-boud environments of N-acetyl-D-glucosamine anomers and lysozyme. Biochemistry. 1968 Sep;7(9):3269–3276. doi: 10.1021/bi00849a033. [DOI] [PubMed] [Google Scholar]
- Gerig J. T., Reinheimer J. D. Nuclear magnetic resonance studies of the interaction of trans-cnnamate with alpha-chymotrypsin. J Am Chem Soc. 1970 May 20;92(10):3146–3150. doi: 10.1021/ja00713a037. [DOI] [PubMed] [Google Scholar]
- Hollis D. P. A nuclear magnetic resonance study of substrate binding by alcohol dehydrogenases. Biochemistry. 1967 Jul;6(7):2080–2087. doi: 10.1021/bi00859a027. [DOI] [PubMed] [Google Scholar]
- JARDETZKY O., WADE N. G., FISCHER J. J. Proton magnetic resonance investigation of enzyme-coenzyme complexes. Nature. 1963 Jan 12;197:183–184. doi: 10.1038/197183a0. [DOI] [PubMed] [Google Scholar]
- Jardetzky O., Wade-Jardetzky N. G. The conformation of pyridine dinucleotides in solution. J Biol Chem. 1966 Jan 10;241(1):85–91. [PubMed] [Google Scholar]
- Kaloustian H. D., Kaplan N. O. Lactate dehydrogenase of lobster (Homarus americanus) tail muscle. II. Kinetics and regulatory properties. J Biol Chem. 1969 Jun 10;244(11):2902–2910. [PubMed] [Google Scholar]
- Lee G. C., Chan S. I. A 31P NMR study of the association of uridine-3'-monophosphate to ribonuclease A. Biochem Biophys Res Commun. 1971 Apr 2;43(1):142–148. doi: 10.1016/s0006-291x(71)80098-0. [DOI] [PubMed] [Google Scholar]
- McDonald G., Brown B., Hollis D., Walter C. Some effects of environment on the folding of nicotinamide-adenine dinucleotides in aqueous solutions. Biochemistry. 1972 May 9;11(10):1920–1930. doi: 10.1021/bi00760a029. [DOI] [PubMed] [Google Scholar]
- Meadows D. H., Jardetzky O., Epand R. M., Ruterjans H. H., Scheraga H. A. Assignment of the histidine peaks in the nuclear magnetic resonance spectrum of ribonuclease. Proc Natl Acad Sci U S A. 1968 Jul;60(3):766–772. doi: 10.1073/pnas.60.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meadows D. H., Jardetzky O. Nuclear magnetic resonance studies of the structure and binding sites of enzymes. IV. Cytidine 3'-monophosphate binding to ribonuclease. Proc Natl Acad Sci U S A. 1968 Oct;61(2):406–413. doi: 10.1073/pnas.61.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meadows D. H., Roberts G. C., Jardetzky O. Nuclear magnetic resonance studies of the structure and binding sites of enzymes. 8. Inhibitor binding to ribonuclease. J Mol Biol. 1969 Nov 14;45(3):491–511. doi: 10.1016/0022-2836(69)90308-8. [DOI] [PubMed] [Google Scholar]
- Oppenheimer N. J., Arnold L. J., Kaplan N. O. A structure of pyridine nucleotides in solution. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3200–3205. doi: 10.1073/pnas.68.12.3200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pesce A., Fondy T. P., Stolzenbach F., Castillo F., Kaplan N. O. The comparative enzymology of lactic dehydrogenases. 3. Properties of the H4 and M4 enzymes from a number of vertebrates. J Biol Chem. 1967 May 10;242(9):2151–2167. [PubMed] [Google Scholar]
- Raftery M. A., Dahlquist F. W., Chan S. I., Parsons S. M. A proton magnetic resonance study of the association of lysozyme with monosaccharide inhibitors. J Biol Chem. 1968 Aug 25;243(16):4175–4180. [PubMed] [Google Scholar]
- Sarma R. H., Kaplan N. O. 220 MHz proton nuclear magnetic resonance study of the interaction between chicken M4 lactate dehydrogenase and reduced diphosphopyridine nucleotide. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1375–1382. doi: 10.1073/pnas.67.3.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spotswood T., Evans J. M., Richards J. H. Enzyme--substrate interaction by nuclear magnetic resonance. J Am Chem Soc. 1967 Sep 13;89(19):5052–5054. doi: 10.1021/ja00995a047. [DOI] [PubMed] [Google Scholar]
- Sykes B. D. An application of transient nuclear magnetic resonance methods to the measurement of biological exchange rates. The interaction of trifluoroacetyl-D-phenylalanine with the chymotrypsins. J Am Chem Soc. 1969 Feb 12;91(4):949–955. doi: 10.1021/ja01032a027. [DOI] [PubMed] [Google Scholar]
- Thomas E. W. Interaction between lysozme and acetamido sugars as detected by proton magnetic resonance spectroscopy. Biochem Biophys Res Commun. 1966 Sep 8;24(5):611–615. doi: 10.1016/0006-291x(66)90366-4. [DOI] [PubMed] [Google Scholar]
- VERLICK S. F. Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes. J Biol Chem. 1958 Dec;233(6):1455–1467. [PubMed] [Google Scholar]
