Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jun;70(6):1744–1748. doi: 10.1073/pnas.70.6.1744

Ca2+ Transport by Mitochondria from L1210 Mouse Ascites Tumor Cells

Baltazar Reynafarje 1, Albert L Lehninger 1
PMCID: PMC433586  PMID: 4515933

Abstract

Mitochondria isolated from the ascites form of L1210 mouse leukemia cells readily accumulate Ca2+ from the suspending medium and eject H+ during oxidation of succinate in the presence of phosphate and Mg2+, with normal stoichiometry between Ca2+ uptake and electron transport. Ca2+ loads up to 1600 ng-atoms per mg of protein are attained. As is the case in mitochondria from normal tissues, Ca2+ uptake takes precedence over oxidative phosphorylation. However, Ca2+ transport by the L-1210 mitochondria is unusual in other respects, which may possibly have general significance in tumor cells. The apparent affinity of the L1210 mitochondria for Ca2+ in stimulation of oxygen uptake is about 3-fold greater than in normal liver mitochondria; moreover, the maximal rate of Ca2+ transport is also considerably higher. Furthermore, when Ca2+ pulses are added to L1210 mitochondria in the absence of phosphate or other permeant anions, much larger amounts of Ca2+ are bound and H+ ejected per atom of oxygen consumed than in the presence of phosphate; up to 7 Ca2+ ions are bound per pair of electrons passing each energy-conserving site of the electron-transport chain. Such “superstoichiometry” of Ca2+ uptake can be accounted for by two distinct types of respiration-dependent interaction of Ca2+ with the L1210 mitochondria. One is the stimulation of oxygen consumption, which is achieved by relatively low concentrations of Ca2+ (Km ≅ 8 μM) and is accompanied by binding of Ca2+ up to 40 ng-atoms per mg of protein. The second process, also dependent on electron transport, is the binding of further Ca2+ from the medium in exchange with previously stored membrane-bound protons, in which the affinity for Ca2+ is much lower (Km ≅ 120 μM).

Keywords: H+ ejection, electron transport, superstoichiometry

Full text

PDF
1744

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzi A., Chance B., Radda G. K., Lee C. P. A fluorescence probe of energy-dependent structure changes in fragmented membranes. Proc Natl Acad Sci U S A. 1969 Feb;62(2):612–619. doi: 10.1073/pnas.62.2.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azzi A. Redistribution of the electrical charge of the mitochondrial membrane during energy conservation. Biochem Biophys Res Commun. 1969 Oct 8;37(2):254–260. doi: 10.1016/0006-291x(69)90727-x. [DOI] [PubMed] [Google Scholar]
  3. Borle A. B. Kinetic analysis of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells. J Membr Biol. 1972;10(1):45–66. doi: 10.1007/BF01867847. [DOI] [PubMed] [Google Scholar]
  4. Brierley G. P., Settlemire C. T., Knight V. A. Ion transport by heart mitochondria. XI. The spontaneous and induced permeability of heart mitochondria to cations. Arch Biochem Biophys. 1968 Jul;126(1):276–288. doi: 10.1016/0003-9861(68)90584-5. [DOI] [PubMed] [Google Scholar]
  5. CARAFOLI E., ROSSI C. S., LEHNINGER A. L. UPTAKE OF ADENINE NUCLEOTIDES BY RESPIRING MITOCHONDRIA DURING ACTIVE ACCUMULATION OF CA++ AND PHOSPHATE. J Biol Chem. 1965 May;240:2254–2261. [PubMed] [Google Scholar]
  6. CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
  7. Carafoli E., Gamble R. L., Rossi C. S., Lehninger A. L. Super-stoichiometric ratios between ion movements and electron transport in rat liver mitochondria. J Biol Chem. 1967 Mar 25;242(6):1199–1204. [PubMed] [Google Scholar]
  8. Carafoli E., Lehninger A. L. A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem J. 1971 May;122(5):681–690. doi: 10.1042/bj1220681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chance B., Yoshioka T. External ca2+ concentrations associated with membrane alkalinization in mitochondria. Biochemistry. 1966 Oct;5(10):3224–3229. doi: 10.1021/bi00874a023. [DOI] [PubMed] [Google Scholar]
  10. Colonna Raffaele, Dell'Antone Paolo, Azzone Giovanni Felice, Ziche Bruno, Pregnolato Luciano. Nucleophilic sites in energized mitochondrial membranes. FEBS Lett. 1970 Sep 18;10(1):13–16. doi: 10.1016/0014-5793(70)80404-5. [DOI] [PubMed] [Google Scholar]
  11. DRAHOTA Z., CARAFOLI E., ROSSI C. S., GAMBLE R. L., LEHNINGER A. L. THE STEADY STATE MAINTENANCE OF ACCUMULATED CA++ IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2712–2720. [PubMed] [Google Scholar]
  12. Dell'Antone P., Colonna R., Azzone G. F. The membrane structure studied with cationic dyes. 1. The binding of cationic dyes to submitochondrial particles and the question of the polarity of the ion-translocation mechanism. Eur J Biochem. 1972 Jan 21;24(3):553–565. doi: 10.1111/j.1432-1033.1972.tb19718.x. [DOI] [PubMed] [Google Scholar]
  13. Dell'Antone P., Colonna R., Azzone G. F. The membrane structure studied with cationic dyes. 2. Aggregation, metachromatic effects and pK a shifts. Eur J Biochem. 1972 Jan 21;24(3):566–576. doi: 10.1111/j.1432-1033.1972.tb19719.x. [DOI] [PubMed] [Google Scholar]
  14. GREENAWALT J. W., ROSSI C. S., LEHNINGER A. L. EFFECT OF ACTIVE ACCUMULATION OF CALCIUM AND PHOSPHATE IONS ON THE STRUCTURE OF RAT LIVER MITOCHONDRIA. J Cell Biol. 1964 Oct;23:21–38. doi: 10.1083/jcb.23.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gilbert I. G. The effects of divalent cations on the ionic permeability of cell membranes in normal and tumour tissues. Eur J Cancer. 1972 Feb;8(1):99–105. doi: 10.1016/0014-2964(72)90089-8. [DOI] [PubMed] [Google Scholar]
  16. Hackenbrock C. R., Caplan A. I. Ion-induced ultrastructural transformations in isolated mitochondria. The energized uptake of calcium. J Cell Biol. 1969 Jul;42(1):221–234. doi: 10.1083/jcb.42.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966 Aug;30(2):269–297. doi: 10.1083/jcb.30.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hansford R. G., Lehninger A. L. The effect of the coupled oxidation of substrate on the permeability of blowfly flight-muscle mitochondria to potassium and other cations. Biochem J. 1972 Feb;126(3):689–700. doi: 10.1042/bj1260689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holley R. W. A unifying hypothesis concerning the nature of malignant growth. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2840–2841. doi: 10.1073/pnas.69.10.2840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  21. Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
  23. Rossi C., Azzone G. F. H+/O ratio during ca2+ uptake in rat-liver mitochondria. Biochim Biophys Acta. 1965 Nov 22;110(2):434–436. doi: 10.1016/s0926-6593(65)80054-6. [DOI] [PubMed] [Google Scholar]
  24. Thorne R. F., Bygrave F. L. Interaction of calcium with mitochondria isolated from Ehrlich ascites tumour cells. Biochem Biophys Res Commun. 1973 Jan 23;50(2):294–299. doi: 10.1016/0006-291x(73)90839-5. [DOI] [PubMed] [Google Scholar]
  25. VASINGTON F. D., MURPHY J. V. Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem. 1962 Aug;237:2670–2677. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES