Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jun;70(6):1749–1752. doi: 10.1073/pnas.70.6.1749

A Cytoplasmic Regulatory Mutant of Euglena: Constitutivity for the Light-Inducible Chloroplast Transfer RNAs

Diane J Goins *, R J Reynolds , Jerome A Schiff , W Edgar Barnett §,
PMCID: PMC433587  PMID: 16592092

Abstract

An ultraviolet-induced cytoplasmic mutant (G1BU) of Euglena gracilis Klebs var. bacillaris Pringsheim is described. G1BU, in addition to being golden in color and containing smaller amounts of chlorophyll than wild type when grown in the light, is a regulatory constitutive mutant for the light-inducible chloroplast isoleucine and methionine tRNAs; i.e., these two tRNAs are present in dark-grown G1BU cells at approximately the levels present in light-grown wild-type cells. Six other mutants were also examined for normal control of plastid tRNA biosynthesis; all four of the aplastidic mutants (lacking appreciable plastid structures and detectable plastid DNA) are incapable of chloroplast tRNA biosynthesis, whereas two other color mutants that do contain plastids and chloroplast DNA have normal plastid tRNA regulation.

Keywords: tRNA biosynthesis, plastid DNA, chloroplast mutation

Full text

PDF
1749

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S. Isolation of tyrosine tRNA precursor molecules. Nat New Biol. 1971 Jan 6;229(1):19–21. doi: 10.1038/newbio229019a0. [DOI] [PubMed] [Google Scholar]
  2. Altman S., Smith J. D. Tyrosine tRNA precursor molecule polynucleotide sequence. Nat New Biol. 1971 Sep 8;233(36):35–39. doi: 10.1038/newbio233035a0. [DOI] [PubMed] [Google Scholar]
  3. BOLLUM F. J. Thermal conversion of nonpriming deoxyribonucleic acid to primer. J Biol Chem. 1959 Oct;234:2733–2734. [PubMed] [Google Scholar]
  4. Barnett W. E., Pennington C. J., Jr, Fairfield S. A. Induction of euglena transfer RNA's by light. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1261–1268. doi: 10.1073/pnas.63.4.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fairfield S. A., Barnett W. E. On the similarity between the tRNAs of organelles and prokaryotes. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2972–2976. doi: 10.1073/pnas.68.12.2972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GIBOR A., GRANICK S. Ultraviolet sensitive factors in the cytoplasm that affect the differentiation of Euglena plastids. J Cell Biol. 1962 Dec;15:599–603. doi: 10.1083/jcb.15.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Reger B. J., Fairfield S. A., Epler J. L., Barnett W. E. Identification and origin of some chloroplast aminoacyl-tRNA synthetases and tRNAs. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1207–1213. doi: 10.1073/pnas.67.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Robertson H. D., Altman S., Smith J. D. Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor. J Biol Chem. 1972 Aug 25;247(16):5243–5251. [PubMed] [Google Scholar]
  9. Stern A. I., Schiff J. A., Epstein H. T. Studies of Chloroplast Development in Euglena. V. Pigment Biosynthesis, Photosynthetic Oxygen Evolution and Carbon Dioxide Fixation during Chloroplast Development. Plant Physiol. 1964 Mar;39(2):220–226. doi: 10.1104/pp.39.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Weiss J. F., Kelmers A. D. A new chromatographic system for increased resolution of transfer ribonucleic acids. Biochemistry. 1967 Aug;6(8):2507–2513. doi: 10.1021/bi00860a030. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES