Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jun;70(6):1790–1793. doi: 10.1073/pnas.70.6.1790

Aminoacid Sequence of Dogfish M4 Lactate Dehydrogenase

Susan S Taylor 1, Susanna S Oxley 1, William S Allison 1, Nathan O Kaplan 1
PMCID: PMC433597  PMID: 4515938

Abstract

About 80% of the aminoacid sequence of dogfish (Squalus acanthius) M4 lactate dehydrogenase (EC 1.1.1.27) has been elucidated. Several sequence homologies with peptides from pig H4 and pig M4 lactate dehydrogenase are identified. Histidine 195 is homologous to the essential histidine residue in pig H4 lactate dehydrogenase. Similarities in the sequence around the “essential” cysteine residue of lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and yeast and liver alcohol dehydrogenase are delineated.

Keywords: glyceraldehyde-3-phosphate dehydrogenase, lactic acid yeast and liver alcohol dehydrogenases

Full text

PDF
1790

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPELLA E., MARKERT C. L. Dissociation of lactate dehydrogenase into subunits with guanidine hydrochloride. Biochem Biophys Res Commun. 1961 Nov 20;6:171–176. doi: 10.1016/0006-291x(61)90123-1. [DOI] [PubMed] [Google Scholar]
  2. Adams M. J., Ford G. C., Koekoek R., Lentz P. J., McPherson A., Jr, Rossmann M. G., Smiley I. E., Schevitz R. W., Wonacott A. J. Structure of lactate dehydrogenase at 2-8 A resolution. Nature. 1970 Sep 12;227(5263):1098–1103. doi: 10.1038/2271098a0. [DOI] [PubMed] [Google Scholar]
  3. Allison W. S., Admiraal J., Kaplan N. O. The subunits of dogfish M4 lactic dehydrogenase. J Biol Chem. 1969 Sep 10;244(17):4743–4749. [PubMed] [Google Scholar]
  4. Butler P. J., Harris J. I., Hartley B. S., Lebeman R. The use of maleic anhydride for the reversible blocking of amino groups in polypeptide chains. Biochem J. 1969 May;112(5):679–689. doi: 10.1042/bj1120679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cahn R. D., Zwilling E., Kaplan N. O., Levine L. Nature and Development of Lactic Dehydrogenases: The two major types of this enzyme form molecular hybrids which change in makeup during development. Science. 1962 Jun 15;136(3520):962–969. doi: 10.1126/science.136.3520.962. [DOI] [PubMed] [Google Scholar]
  6. DISABATO G., KAPLAN N. O. THE ROLE OF THE SULFHYDRYL GROUPS OF LACTIC DEHYDROGENASES. Biochemistry. 1963 Jul-Aug;2:776–781. doi: 10.1021/bi00904a026. [DOI] [PubMed] [Google Scholar]
  7. Everse J., Berger R. L., Kaplan N. O. Physiological concentrations of lactate dehydrogenases and substrate inhibition. Science. 1970 Jun 5;168(3936):1236–1238. doi: 10.1126/science.168.3936.1236. [DOI] [PubMed] [Google Scholar]
  8. Fondy T. P., Everse J., Driscoll G. A., Castillo F., Stolzenbach F. E., Kaplan N. O. The comparative enzymology of lactic dehydrogenases. IV. Function of sulfhydryl groups in lactic dehydrogenases and the sequence around the essential group. J Biol Chem. 1965 Nov;240(11):4219–4234. [PubMed] [Google Scholar]
  9. GRAY W. R., HARTLEY B. S. THE STRUCTURE OF A CHYMOTRYPTIC PEPTIDE FROM PSEUDOMONAS CYTOCHROME C-551. Biochem J. 1963 Nov;89:379–380. doi: 10.1042/bj0890379. [DOI] [PubMed] [Google Scholar]
  10. GROSS E., WITKOP B. Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pancreatic ribonuclease. J Biol Chem. 1962 Jun;237:1856–1860. [PubMed] [Google Scholar]
  11. HARRIS I., MERIWETHER B. P., PARK J. H. Chemical nature of the catalytic sites in glyceraldehyde-3-phosphate dehydrogenase. Nature. 1963 Apr 13;198:154–157. doi: 10.1038/198154a0. [DOI] [PubMed] [Google Scholar]
  12. HARRIS I. STRUCTURE AND CATALYTIC ACTIVITY OF ALCOHOL DEHYDROGENASES. Nature. 1964 Jul 4;203:30–34. doi: 10.1038/203030a0. [DOI] [PubMed] [Google Scholar]
  13. Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heck H. de A. Porcine heart lactate dehydrogenase. Optical rotatory dispersion, thermodynamics, and kinetics of binding reactions. J Biol Chem. 1969 Aug 25;244(16):4375–4381. [PubMed] [Google Scholar]
  15. Holbrook J. J., Pfleiderer G., Mella K., Volz M., Leskowac W., Jeckel R. The importance of SH-groups for enzymic activity. 7. The amino acid sequence around the essential SH-group of pig heart lactate dehydrogenase, isoenzyme I. Eur J Biochem. 1967 Jun;1(4):476–481. doi: 10.1111/j.1432-1033.1967.tb00095.x. [DOI] [PubMed] [Google Scholar]
  16. Jeckel D., Anders R., Pfleiderer G. Zum Wirkungsmechanismus der Lactat-Dehydrogenase. VI. Anderung der biochemischen Eigenschaften von Lactat-Dehydrogenase aus Schweineherzmuskel nach Nitrierung mit Tetranitromethan. Hoppe Seylers Z Physiol Chem. 1971 Jun;352(6):769–779. [PubMed] [Google Scholar]
  17. KRIMSKY I., RACKER E. Acyl derivatives of glyceraldehyde-3-phosphate dehydrogenase. Science. 1955 Aug 19;122(3164):319–321. doi: 10.1126/science.122.3164.319. [DOI] [PubMed] [Google Scholar]
  18. LI T. K., VALLEE B. L. ACTIVE-CENTER PEPTIDES OF LIVER-ALCOHOL DEHYDROGENASE. I. THE SEQUENCE SURROUNDING THE ACTIVE CYSTEINYL RESIDUES. Biochemistry. 1964 Jun;3:869–873. doi: 10.1021/bi00894a025. [DOI] [PubMed] [Google Scholar]
  19. Mella K., Torff H. J., Fölsche E. T., Pfleiderer G. Die Carboxyl-terminale Aminosäuresequenz der Lactat-Dehydrogenase aus Schweineherz. Hoppe Seylers Z Physiol Chem. 1969 Jan;350(1):28–34. doi: 10.1515/bchm2.1969.350.1.28. [DOI] [PubMed] [Google Scholar]
  20. Offord R. E. Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature. 1966 Aug 6;211(5049):591–593. doi: 10.1038/211591a0. [DOI] [PubMed] [Google Scholar]
  21. PERHAM R. N., HARRIS J. I. AMINO ACID SEQUENCES AROUND THE REACTIVE CYSTEINE RESIDUES IN GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASES. J Mol Biol. 1963 Sep;7:316–320. doi: 10.1016/s0022-2836(63)80011-x. [DOI] [PubMed] [Google Scholar]
  22. PESCE A., MCKAY R. H., STOLZENBACH F., CAHN R. D., KAPLAN N. O. THE COMPARATIVE ENZYMOLOGY OF LACTIC DEHYDROGENASES. I. PROPERTIES OF THE CRYSTALLINE BEEF AND CHICKEN ENZYMES. J Biol Chem. 1964 Jun;239:1753–1761. [PubMed] [Google Scholar]
  23. Pesce A., Fondy T. P., Stolzenbach F., Castillo F., Kaplan N. O. The comparative enzymology of lactic dehydrogenases. 3. Properties of the H4 and M4 enzymes from a number of vertebrates. J Biol Chem. 1967 May 10;242(9):2151–2167. [PubMed] [Google Scholar]
  24. Rossmann M. G., Adams M. J., Buehner M., Ford G. C., Hackert M. L., Lentz P. J., Jr, McPherson A., Jr, Schevitz R. W., Smiley I. E. Structural constraints of possible mechanisms of lactate dehydrogenase as shown by high resolution studies of the apoenzyme and a variety of enzyme complexes. Cold Spring Harb Symp Quant Biol. 1972;36:179–191. doi: 10.1101/sqb.1972.036.01.025. [DOI] [PubMed] [Google Scholar]
  25. Schwert G. W., Miller B. R., Peanasky R. J. Lactic dehydrogenase. X. A re-evaluation of the effects of pH upon the kinetics of the reaction. J Biol Chem. 1967 Jul 25;242(14):3245–3252. [PubMed] [Google Scholar]
  26. Woenckhaus C., Berghäuser J., Pfleiderer G. Markierung essentieller Aminosäurereste der Lactat-Dehydrogenase aus Schweineherz mit (Carbonyl-14C)3-(2-Brom-acetyl)-pyridin. Hoppe Seylers Z Physiol Chem. 1969 Apr;350(4):473–483. [PubMed] [Google Scholar]
  27. Yang P. C., Schwert G. W. Inactivation of lactate dehydrogenase by butanedione. Biochemistry. 1972 Jun 6;11(12):2218–2224. doi: 10.1021/bi00762a002. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES