Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jun;70(6):1799–1803. doi: 10.1073/pnas.70.6.1799

Translation of Brome Mosaic Viral Ribonucleic Acid in a Cell-Free System Derived from Wheat Embryo

D S Shih 1,2, Paul Kaesberg 1,2
PMCID: PMC433600  PMID: 4515941

Abstract

The four RNAs of brome mosaic virus induce substantial incorporation of amino acids into protein when used as messengers in a cell-free protein-synthesizing system derived from wheat embryo. RNA 4 is highly efficient as a monocistronic messenger for the viral coat protein. Acetate, derived from acetyl coenzyme A, is incorporated into the product made in vitro. Although RNA 3 also contains the coat-protein cistron, it induces synthesis mostly of a protein larger than coat protein. RNAs 1 and 2 also induce the synthesis of substantial amounts of protein other than coat protein. However, an equimolar mixture of RNAs 3 and 4 or of 1, 2, 3, and 4 induces synthesis of coat protein almost exclusively. This result suggests that the coat-protein cistron, when present as a monocistronic messenger, inhibits translation of all other viral messages.

Keywords: in vitro protein synthesis, monocistronic messenger, acetate incorporation

Full text

PDF
1799

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bockstahler L. E., Kaesberg P. Isolation and properties of RNA from bromegrass mosaic virus. J Mol Biol. 1965 Aug;13(1):127–137. doi: 10.1016/s0022-2836(65)80084-5. [DOI] [PubMed] [Google Scholar]
  2. Clark J. M., Jr, Chang A. Y., Spiegelman S., Reichmann M. E. The in vitro translation of a monocistronic message. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1193–1197. doi: 10.1073/pnas.54.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Craven G. R., Voynow P., Hardy S. J., Kurland C. G. The ribosomal proteins of Escherichia coli. II. Chemical and physical characterization of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2906–2915. doi: 10.1021/bi00835a032. [DOI] [PubMed] [Google Scholar]
  4. Hall T. C., Shih D. S., Kaesberg P. Enzyme-mediated binding of tyrosine to brome-mosaic-virus ribonucleic acid. Biochem J. 1972 Oct;129(4):969–976. doi: 10.1042/bj1290969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. JOHNSTON F. B., STERN H. Mass isolation of viable wheat embryos. Nature. 1957 Jan 19;179(4551):160–161. doi: 10.1038/179160b0. [DOI] [PubMed] [Google Scholar]
  6. Jockusch H., Ball L. A., Kaesberg P. Synthesis of polypeptides directed by the RNA of phage Q beta. Virology. 1970 Oct;42(2):401–414. doi: 10.1016/0042-6822(70)90283-7. [DOI] [PubMed] [Google Scholar]
  7. Klein W. H., Nolan C., Lazar J. M., Clark J. M., Jr Translation of satellite tobacco necrosis virus ribonucleic acid. I. Characterization of in vitro procaryotic and eucaryotic translation products. Biochemistry. 1972 May 23;11(11):2009–2014. doi: 10.1021/bi00761a003. [DOI] [PubMed] [Google Scholar]
  8. Lane L. C., Kaesberg P. Multiple genetic components in bromegrass mosaic virus. Nat New Biol. 1971 Jul 14;232(28):40–43. doi: 10.1038/newbio232040a0. [DOI] [PubMed] [Google Scholar]
  9. Lucas-Lenard J. Protein biosynthesis. Annu Rev Biochem. 1971;40:409–448. doi: 10.1146/annurev.bi.40.070171.002205. [DOI] [PubMed] [Google Scholar]
  10. Marcus A., Luginbill B., Feeley J. Polysome formation with tobacco mosaic virus RNA. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1243–1250. doi: 10.1073/pnas.59.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marcus A. Tobacco mosaic virus ribonucleic acid-dependent amino acid incorporation in a wheat embryo system in vitro. Formation of a ribosome-messenger "initiation" complex. J Biol Chem. 1970 Mar 10;245(5):962–966. [PubMed] [Google Scholar]
  12. Medappa K. C., McLean C., Rueckert R. R. On the structure of rhinovirus 1A. Virology. 1971 May;44(2):259–270. doi: 10.1016/0042-6822(71)90258-3. [DOI] [PubMed] [Google Scholar]
  13. Rice R., Fraenkel-Conrat H. Fidelity of translation of satellite tobacco necrosis virus ribonucleic acid in a cell-free Escherichia coli system. Biochemistry. 1973 Jan 16;12(2):181–187. doi: 10.1021/bi00726a001. [DOI] [PubMed] [Google Scholar]
  14. STUBBS J. D., KAEBERG P. A PROTEIN SUBUNIT OF BROMEGRASS MOSAIC VIRUS. J Mol Biol. 1964 Feb;8:314–323. doi: 10.1016/s0022-2836(64)80140-6. [DOI] [PubMed] [Google Scholar]
  15. Shih D. S., Lane L. C., Kaesberg P. Origin of the small component of brome mosaic virus RNA. J Mol Biol. 1972 Mar 14;64(2):353–362. doi: 10.1016/0022-2836(72)90503-7. [DOI] [PubMed] [Google Scholar]
  16. Stubbs J. D., Kaesberg P. Amino acid incorporation in an Escherichia coli cell-free system directed by bromegrass mosaic virus ribonucleic acid. Virology. 1967 Nov;33(3):385–397. doi: 10.1016/0042-6822(67)90114-6. [DOI] [PubMed] [Google Scholar]
  17. Swank R. T., Munkres K. D. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971 Feb;39(2):462–477. doi: 10.1016/0003-2697(71)90436-2. [DOI] [PubMed] [Google Scholar]
  18. YAMAZAKI H., KAESBERG P. DEGRADATION OF BROMEGRASS MOSAIC VIRUS WITH CALCIUM CHLORIDE AND THE ISOLATION OF ITS PROTEIN AND NUCLEIC ACID. J Mol Biol. 1963 Dec;7:760–762. doi: 10.1016/s0022-2836(63)80124-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES