Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jun;70(6):1898–1902. doi: 10.1073/pnas.70.6.1898

Specificity of Antibodies in Amphibian Larvae Possessing a Small Number of Lymphocytes

Joseph Haimovich 1, Louis Du Pasquier 1
PMCID: PMC433622  PMID: 4124308

Abstract

Tadpoles of Rana catesbiana, possessing about two million lymphocytes, were immunized with 2,4-dinitrophenyl- and 2,4,6-trinitrophenyl-conjugated bacteria and proteins, and the antibodies produced were studied by inactivation of dinitrophenyl- and trinitrophenyl-conjugated bacteriophages. Crossreactions were determined by inhibition of inactivation of modified phages with the lysine derivatives of 2,4-dinitrophenyl-,2,4,6-trinitrophenyl-, and 4-mononitrophenyl-groups. Antibodies to the two hapten-conjugates differed as significantly from each other in tadpoles as in larger animals. The ability of the small number of lymphocytes in tadpoles to discriminate between structurally similar determinants, and the estimated large number of antibodies required to cover the whole spectrum of antigenic specificities, suggests that an antigen-reactive cell changes specificity during its life time.

Keywords: nitrophenyl determinants, modified bacteriophages, cross-reactivity, lymphocyte potentiality

Full text

PDF
1898

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. L., Byrt P. Specific inactivation of antigen-reactive cells with 125I-labelled antigen. Nature. 1969 Jun 28;222(5200):1291–1292. doi: 10.1038/2221291a0. [DOI] [PubMed] [Google Scholar]
  2. Barber P., Rittenberg M. B. Anti-trinitrophenyl (TNP) antibody detection by neutralization of TNP-coliphage T4. Immunochemistry. 1969 Mar;6(2):163–174. doi: 10.1016/0019-2791(69)90153-0. [DOI] [PubMed] [Google Scholar]
  3. Cooper E. L., Hildemann W. H. The immune response of larval bullfrogs (Rana catesbeiana) to diverse antigens. Ann N Y Acad Sci. 1965 Aug 10;126(1):647–661. doi: 10.1111/j.1749-6632.1965.tb14311.x. [DOI] [PubMed] [Google Scholar]
  4. Du Pasquier L. Ontogeny of the immune response in animals having less than one million lymphocytes: the larvae of the toad Alytes obstetricans. Immunology. 1970 Aug;19(2):353–362. [PMC free article] [PubMed] [Google Scholar]
  5. Du Pasquier L. Ontogeny of the immune response in cold-blooded vertebrates. Curr Top Microbiol Immunol. 1973;61:37–88. doi: 10.1007/978-3-642-65531-9_2. [DOI] [PubMed] [Google Scholar]
  6. Du Pasquier L., Weiss N., Loor F. Direct evidence for immunoglobulins on the surface of thymus lymphocytes of amphibian larvae. Eur J Immunol. 1972 Aug;2(4):366–370. doi: 10.1002/eji.1830020414. [DOI] [PubMed] [Google Scholar]
  7. Eisen H. N., Michaelides M. C., Underdown B. J., Schulenburg E. P., Simms E. S. Experimental approaches to homogenous antibody populations. Myeloma proteins with antihapten antibody activity. Fed Proc. 1970 Jan-Feb;29(1):78–84. [PubMed] [Google Scholar]
  8. Eisen H. N., Michaelides M. C., Underdown B. J., Schulenburg E. P., Simms E. S. Experimental approaches to homogenous antibody populations. Myeloma proteins with antihapten antibody activity. Fed Proc. 1970 Jan-Feb;29(1):78–84. [PubMed] [Google Scholar]
  9. Goetzl E. J., Metzger H. Affinity labeling of a mouse myeloma protein which binds nitrophenyl ligands. Kinetics of labeling and isolation of a labeled peptide. Biochemistry. 1970 Mar 3;9(5):1267–1278. doi: 10.1021/bi00807a031. [DOI] [PubMed] [Google Scholar]
  10. Green I., Vassalli P., Nussenzweig V., Benacerraf B. Specificity of the antibodies produced by single cells following immunization with antigens bearing two types of antigenic determinants. J Exp Med. 1967 Mar 1;125(3):511–526. doi: 10.1084/jem.125.3.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haimovich J., Sela M. Inactivation of bacteriophage T4, of poly-D-alanyl bacteriophage and of penicilloyl bacteriophage by immunospecifically isolated IgM and IgG antibodies. J Immunol. 1969 Jul;103(1):45–55. [PubMed] [Google Scholar]
  12. Haimovich J., Sela M. Inactivation of poly-DL-alanyl bacteriophage T4 with antisera specific toward poly-DL-alanine. J Immunol. 1966 Sep;97(3):338–343. [PubMed] [Google Scholar]
  13. Haimovich J., Tarrab R., Sulica A., Sela M. Antibdies of different specificities in normal rabbit sera. J Immunol. 1970 Apr;104(4):1033–1034. [PubMed] [Google Scholar]
  14. Jerne N. K. THE NATURAL-SELECTION THEORY OF ANTIBODY FORMATION. Proc Natl Acad Sci U S A. 1955 Nov 15;41(11):849–857. doi: 10.1073/pnas.41.11.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jormalainen S., Mäkelä O. Anti-hapten antibodies in normal sera. Eur J Immunol. 1971 Dec;1(6):471–478. doi: 10.1002/eji.1830010613. [DOI] [PubMed] [Google Scholar]
  16. Kimball J. W., Pappenheimer A. M., Jr, Jaton J. C. The response in rabbits to prolonged immunization with type 3 pneumococci. J Immunol. 1971 May;106(5):1177–1184. [PubMed] [Google Scholar]
  17. Little J. R., Eisen H. N. Specificity of the immune response to the 2,4-dinitrophenyl and 2,4,6-trinitrophenyl groups. Ligand binding and fluorescence properties of cross-reacting antibodies. J Exp Med. 1969 Feb 1;129(2):247–265. doi: 10.1084/jem.129.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Marchalonis J., Edelman G. M. Phylogenetic origins of antibody structure. II. Immunoglobulins in the primary immune response of the bullfrog, Rana catesbiana. J Exp Med. 1966 Nov 1;124(5):901–913. doi: 10.1084/jem.124.5.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. NOSSAL G. J., LEDERBERG J. Antibody production by single cells. Nature. 1958 May 17;181(4620):1419–1420. doi: 10.1038/1811419a0. [DOI] [PubMed] [Google Scholar]
  20. Petersen B. H., Ingraham J. S. The limitation of individual cells to the production of a single specificity of antibody in response to a coupled hapten-antigen complex. Immunochemistry. 1969 May;6(3):379–390. doi: 10.1016/0019-2791(69)90295-x. [DOI] [PubMed] [Google Scholar]
  21. Rosenquist G. L., Hoffman R. Z. The production of anti-DNP antibody in the bullfrog, Rana catesbiana. J Immunol. 1972 Jun;108(6):1499–1505. [PubMed] [Google Scholar]
  22. Rosenstein R. W., Musson R. A., Armstrong M. K., Konigsberg W. H., Richards F. F. Contact regions for dinitrophenyl and menadione haptens in an immunoglobulin binding more than one antigen. Proc Natl Acad Sci U S A. 1972 Apr;69(4):877–881. doi: 10.1073/pnas.69.4.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sarvas H., Mäkelä O. Haptenated bacteriophage in the assay of antibody quantity and affinity: maturation of an immune response. Immunochemistry. 1970 Nov;7(11):933–943. doi: 10.1016/0019-2791(70)90054-6. [DOI] [PubMed] [Google Scholar]
  24. Schubert D., Jobe A., Cohn M. Mouse myelomas producing precipitating antibody to nucleic acid bases and-or nitrophenyl derivatives. Nature. 1968 Nov 30;220(5170):882–885. doi: 10.1038/220882a0. [DOI] [PubMed] [Google Scholar]
  25. Segal S., Globerson A., Feldman M., Haimovich J., Sela M. In vitro induction of a primary response to the dinitrophenyl determinant. J Exp Med. 1970 Jan 1;131(1):93–99. doi: 10.1084/jem.131.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sigel M. M., Voss E. W., Jr, Rudikoff S. Binding properties of shark immunoglobulins. Comp Biochem Physiol A Comp Physiol. 1972 May 1;42(1):249–259. doi: 10.1016/0300-9629(72)90384-2. [DOI] [PubMed] [Google Scholar]
  27. Underdown B. J., Eisen H. N. Cross-reactions between 2,4-dinitrophenyl and 5-acetouracil groups. J Immunol. 1971 Jun;106(6):1431–1440. [PubMed] [Google Scholar]
  28. Yoshida T., Paul W. E., Benacerraf B. Genetic control of the specificity of anti-DNP antibodies. I. Differences in the specificity of anti-DNP antibody produced by mammalian species. J Immunol. 1970 Aug;105(2):306–313. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES