Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jul;70(7):2064–2068. doi: 10.1073/pnas.70.7.2064

Virus-Specific Messenger RNA and Nascent Polypeptides in Polyribosomes of Cells Replicating Murine Sarcoma-Leukemia Viruses

G Vecchio 1,*, N Tsuchida 1, G Shanmugam 1, M Green 1
PMCID: PMC433666  PMID: 4352969

Abstract

We present evidence that virus-specific RNA is present in polyribosomes of transformed cells replicating the murine sarcoma-leukemia virus complex and that it serves as messenger RNA for the synthesis of viral-coded proteins. Both virus-specific RNA (detected by hybridization with the [3H]DNA product of the viral RNA-directed DNA polymerase) and nascent viral polypeptides (measured by precipitation with antiserum to purified virus) were found in membrane-bound and free polyribosomes. Membrane-bound polyribosomes contained a higher content of both virus-specific RNA and nascent viral polypeptides. From 60 to 70% of viral RNA sequences were released from polyribosomes with EDTA, consistent with a function as messenger RNA. Maximum amounts of both virus-specific RNA and nascent viral polypeptides were found in the polyribosome region sedimenting at about 350 S.

Keywords: hybridization, RNA-directed DNA polymerase, membrane-bound polysomes, immunoprecipitation

Full text

PDF
2064

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axel R., Schlom J., Spiegelman S. Evidence for translation of viral-specific RNA in cells of a mouse mammary carcinoma. Proc Natl Acad Sci U S A. 1972 Mar;69(3):535–538. doi: 10.1073/pnas.69.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baglioni C., Bleiberg I., Zauderer M. Assembly of membrane-bound polyribosomes. Nat New Biol. 1971 Jul 7;232(27):8–12. doi: 10.1038/newbio232008a0. [DOI] [PubMed] [Google Scholar]
  3. Baglioni C., Vesco C., Jacobs-Lorena M. The role of ribosomal subunits in mammalian cells. Cold Spring Harb Symp Quant Biol. 1969;34:555–565. doi: 10.1101/sqb.1969.034.01.063. [DOI] [PubMed] [Google Scholar]
  4. Blobel G., Potter V. R. Ribosomes in rat liver: an estimate of the percentage of free and membrane-bound ribosomes interacting with messenger RNA in vivo. J Mol Biol. 1967 Sep 28;28(3):539–542. doi: 10.1016/s0022-2836(67)80103-7. [DOI] [PubMed] [Google Scholar]
  5. Blobel G., Sabatini D. Dissociation of mammalian polyribosomes into subunits by puromycin. Proc Natl Acad Sci U S A. 1971 Feb;68(2):390–394. doi: 10.1073/pnas.68.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Butterworth B. E., Hall L., Stoltzfus C. M., Rueckert R. R. Virus-specific proteins synthesized in encephalomyocarditis virus-infected HeLa cells. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3083–3087. doi: 10.1073/pnas.68.12.3083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coffin J. M., Temin H. M. Hybridization of Rous sarcoma virus deoxyribonucleic acid polymerase product and ribonucleic acids from chicken and rat cells infected with Rous sarcoma virus. J Virol. 1972 May;9(5):766–775. doi: 10.1128/jvi.9.5.766-775.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dalgarno L., Cox R. A., Martin E. M. Polyribosomes in normal Krebs 2 ascites tumor cells and in cells infected with encephalomyocarditis virus. Biochim Biophys Acta. 1967 Apr 18;138(2):316–328. doi: 10.1016/0005-2787(67)90492-3. [DOI] [PubMed] [Google Scholar]
  9. Duesberg P. H., Robinson W. S. Nucleic acid and proteins isolated from the Rauscher mouse leukemia virus (MLV). Proc Natl Acad Sci U S A. 1966 Jan;55(1):219–227. doi: 10.1073/pnas.55.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujinaga K., Green M. Mechanism of viral carcinogenesis by DNA mammalian viruses. VII. Viral genes transcribed in adenovirus type 2 infected and transformed cells. Proc Natl Acad Sci U S A. 1970 Feb;65(2):375–382. doi: 10.1073/pnas.65.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gielkens A. L., Berns T. J., Bloemendal H. An efficient procedure for the isolation of polyribosomes from tissue culture. Eur J Biochem. 1971 Oct 26;22(4):478–484. doi: 10.1111/j.1432-1033.1971.tb01566.x. [DOI] [PubMed] [Google Scholar]
  12. Green M., Rokutanda H., Rokutanda M. Virus specific RNA in cells transformed by RNA tumour viruses. Nat New Biol. 1971 Apr 21;230(16):229–232. doi: 10.1038/newbio230229a0. [DOI] [PubMed] [Google Scholar]
  13. Leong J. A., Garapin A. C., Jackson N., Fanshier L., Levinson W., Bishop J. M. Virus-specific ribonucleic acid in cells producing rous sarcoma virus: detection and characterization. J Virol. 1972 Jun;9(6):891–902. doi: 10.1128/jvi.9.6.891-902.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lisowska-Bernstein B., Lamm M. E., Vassalli P. Synthesis of immunoglobulin heavy and light chains by the free ribosomes of a mouse plasma cell tumor. Proc Natl Acad Sci U S A. 1970 Jun;66(2):425–432. doi: 10.1073/pnas.66.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McEwen C. R. Tables for estimating sedimentation through linear concentration gradients of sucrose solution. Anal Biochem. 1967 Jul;20(1):114–149. doi: 10.1016/0003-2697(67)90271-0. [DOI] [PubMed] [Google Scholar]
  16. Milstein C., Brownlee G. G., Harrison T. M., Mathews M. B. A possible precursor of immunoglobulin light chains. Nat New Biol. 1972 Sep 27;239(91):117–120. doi: 10.1038/newbio239117a0. [DOI] [PubMed] [Google Scholar]
  17. Perry R. P., Kelley D. E. Messenger RNA-protein complexes and newly synthesized ribosomal subunits: analysis of free particles and components of polyribosomes. J Mol Biol. 1968 Jul 14;35(1):37–59. doi: 10.1016/s0022-2836(68)80035-x. [DOI] [PubMed] [Google Scholar]
  18. Rosbash M. Formation of membrane-bound polyribosomes. J Mol Biol. 1972 Apr 14;65(3):413–422. doi: 10.1016/0022-2836(72)90198-2. [DOI] [PubMed] [Google Scholar]
  19. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. 5. In vivo incorporation of leucine-1-C14 into the chymotrypsinogen of various cell fractions. J Biophys Biochem Cytol. 1960 Jul;7:619–630. doi: 10.1083/jcb.7.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shanmugam G., Vecchio G., Attardi D., Green M. Immunological studies on viral polypeptide synthesis in cells replicating murine sarcoma-leukemia virus. J Virol. 1972 Sep;10(3):447–455. doi: 10.1128/jvi.10.3.447-455.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tsuchida N., Robin M. S., Green M. Viral RNA subunits in cells transformed by RNA tumor viruses. Science. 1972 Jun 30;176(4042):1418–1420. doi: 10.1126/science.176.4042.1418. [DOI] [PubMed] [Google Scholar]
  22. Van Ventrooij W. J., Henshaw E. C., Hirsch C. A. Nutritional effects on the polyribosome distribution and rate of protein synthesis in Ehrlich ascites tumor cells in culture. J Biol Chem. 1970 Nov 25;245(22):5947–5953. [PubMed] [Google Scholar]
  23. Vassart G. Specific synthesis of thyroglobulin on membrane bound thyroid ribosomes. FEBS Lett. 1972 Apr 15;22(1):53–56. doi: 10.1016/0014-5793(72)80217-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES