Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jul;70(7):2086–2090. doi: 10.1073/pnas.70.7.2086

Conformational Studies of Oxytocin, Lysine Vasopressin, Arginine Vasopressin, and Arginine Vasotocin by Carbon-13 Nuclear Magnetic Resonance Spectroscopy

Roderich Walter *,, K U M Prasad *, Roxanne Deslauriers , Ian C P Smith
PMCID: PMC433671  PMID: 4516207

Abstract

Oxytocin, arginine vasopressin, lysine vasopressin, arginine vasotocin, as well as their cyclic and acyclic analogs, were studied by carbon-13 nuclear magnetic resonance spectroscopy in deuterium oxide and deuterated dimethylsulfoxide. Fourier-transformed spectra were obtained at 25.16 MHz. The resonances of all carbon atoms have been assigned in both solvent systems; this includes tentative assignments of the carbonyl carbons. The spectra of arginine vasopressin and lysine vasopressin are essentially identical when compared in D2O or dimethylsulfoxide, but they differ from those of oxytocin. The spectrum of arginine vasotocin in D2O is intermediate between those of oxytocin and the vasopressins. These spectral differences are not only due to variations in constituent amino acids but are also a reflection of conformational differences of oxytocin, arginine vasotocin, and the vasopressins. All hormones are sensitive to changes in hydrogen ion concentration in both solvents; this was not observed with deamino analogs, which lack the terminal amino group.

Keywords: peptide conformation, neurohypophyseal hormone analogs

Full text

PDF
2086

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRESLOW E. The cupric ion complexes of oxytocin and 2-phenylalanine oxytocin. Biochim Biophys Acta. 1961 Nov 11;53:606–609. doi: 10.1016/0006-3002(61)90230-x. [DOI] [PubMed] [Google Scholar]
  2. Boccalon G., Verdini A. S., Giacometti G. Helix-coil transition of a synthetic polypeptide monitored by fourier transform carbon-13 nuclear magnetic resonance. J Am Chem Soc. 1972 May 17;94(10):3639–3641. doi: 10.1021/ja00765a070. [DOI] [PubMed] [Google Scholar]
  3. Brewster A. I., Hruby V. J., Spatola A. F., Bovey F. A. Carbon-13 nuclear magnetic resonance spectroscopy of oxytocin, related oligopeptides, and selected analogs. Biochemistry. 1973 Apr 10;12(8):1643–1649. doi: 10.1021/bi00732a028. [DOI] [PubMed] [Google Scholar]
  4. Bystrov V. F., Portnova S. L., Tsetlin V. I., Ivanov V. T., Ovchinnikov Y. A. Conformational studies of peptide systems. The rotational states of the NH--CH fragment of alanine dipeptides by nuclear magnetic resonance. Tetrahedron. 1969 Feb;25(3):493–515. doi: 10.1016/s0040-4020(01)83261-0. [DOI] [PubMed] [Google Scholar]
  5. CRAIG L. C., HARFENIST E. J., PALADINI A. C. DIALYSIS STUDIES. 7. THE BEHAVIOR OF ANGIOTENSIN, OXYTOCIN, VASOPRESSIN, AND SOME OF THEIR ANALOGS. Biochemistry. 1964 Jun;3:764–769. doi: 10.1021/bi00894a005. [DOI] [PubMed] [Google Scholar]
  6. DELRE G., PULLMAN B., YONEZAWA T. ELECTRONIC STRUCTURE OF THE ALPHA-AMINO ACIDS OF PROTEINS. I. CHARGE DISTRIBUTIONS AND PROTON CHEMICAL SHIFTS. Biochim Biophys Acta. 1963 Sep 24;75:153–182. doi: 10.1016/0006-3002(63)90595-x. [DOI] [PubMed] [Google Scholar]
  7. Deslauriers R., Garrigou-Lagrange C., Bellocq A. M., Smith U. C. Carbon-13 nuclear magnetic resonance studies on thyrotropin-releasing factor and related peptides. FEBS Lett. 1973 Apr 1;31(1):59–66. doi: 10.1016/0014-5793(73)80073-0. [DOI] [PubMed] [Google Scholar]
  8. Deslauriers R., Smith I. C. Evidence from proton magnetic resonance data for the stacking of aromatic amino acids in lysine-vasopressin: comparison with oxytocin derivatives and related dipeptides. Biochem Biophys Res Commun. 1970 Jul 13;40(1):179–185. doi: 10.1016/0006-291x(70)91063-6. [DOI] [PubMed] [Google Scholar]
  9. Deslauriers R., Walter R., Smith I. C. A carbon-13 nuclear magnetic resonance study of oxytocin and its oligopeptides. Biochem Biophys Res Commun. 1972 Aug 21;48(4):854–859. doi: 10.1016/0006-291x(72)90686-9. [DOI] [PubMed] [Google Scholar]
  10. ENGLANDER S. W. A HYDROGEN EXCHANGE METHOD USING TRITIUM AND SEPHADEX: ITS APPLICATION TO RIBONUCLEASE. Biochemistry. 1963 Jul-Aug;2:798–807. doi: 10.1021/bi00904a030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flohé L., Breitmaier E., Günzler W. A., Voelter W., Jung G. Zum Dissoziationsverhalten von Cystein und verwandten SH-Verbindungen. Eine 13 C-NMR-spektroskopische Untersuchung der pH-abhängigkeit der Ladunsverteilung. Hoppe Seylers Z Physiol Chem. 1972 Jul;353(7):1159–1170. [PubMed] [Google Scholar]
  12. Gibbons W. A., Némethy G., Stern A., Craig L. C. An approach to conformational analysis of peptides and proteins in solution based on a combination of nuclear magnetic resonance spectroscopy and conformational energy calculations. Proc Natl Acad Sci U S A. 1970 Sep;67(1):239–246. doi: 10.1073/pnas.67.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glickson J. D., Urry D. W., Havran R. T., Walter R. Proton magnetic resonance comparison of neurohypophyseal hormones and analogs: deletion of amino groups and the conformation of lysine vasopressin. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2136–2140. doi: 10.1073/pnas.69.8.2136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Glickson J. D., Urry D. W., Walter R. Method for correlation of proton magnetic resonance assignments in different solvents: conformational transition of oxytocin and lysine vasopressin from dimethylsulfoxide to water. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2566–2569. doi: 10.1073/pnas.69.9.2566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gordon W., Havran R. T., Schwartz I. L., Walter R. Conformational differences in neurohypophyseal peptides: a countercurrent distribution and partition chromatography study. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1353–1355. doi: 10.1073/pnas.60.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horsley W. J., Sternlicht H. Carbon-13 magnetic resonance studies of amino acids and peptides. J Am Chem Soc. 1968 Jul 3;90(14):3738–3748. doi: 10.1021/ja01016a025. [DOI] [PubMed] [Google Scholar]
  17. Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
  18. Johnson L. F., Schwartz I. L., Walter R. Oxytocin and neurohypophyseal peptides: spectral assignment and conformational analysis by 220 MHz nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1269–1275. doi: 10.1073/pnas.64.4.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kotelchuck D., Scheraga H. A., Walter R. Conformational energy studies of oxytocin and its cyclic moiety. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3629–3633. doi: 10.1073/pnas.69.12.3629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lyerla J. R., Jr, Freedman M. H. Spectral assignment and conformational analysis of cyclic peptides by carbon-13 nuclear magnetic resonance. J Biol Chem. 1972 Dec 25;247(24):8183–8192. [PubMed] [Google Scholar]
  21. Ohnishi M., Fedarko M. C., Baldeschwieler J. D. Fourier transform C-13 NMR analysis of some free and potassium-ion complexed antibiotics. Biochem Biophys Res Commun. 1972 Jan 14;46(1):312–320. doi: 10.1016/0006-291x(72)90664-x. [DOI] [PubMed] [Google Scholar]
  22. Pitner T. P., Urry D. W. Proton magnetic resonance studies in trifluoroethanol. Solvent mixtures as a means of delineating peptide protons. J Am Chem Soc. 1972 Feb 23;94(4):1399–1400. doi: 10.1021/ja00759a083. [DOI] [PubMed] [Google Scholar]
  23. Ramachandran G. N., Chandrasekaran R., Kopple K. D. Variation of the NH-C alpha-H coupling constant with dihedral angle in the NMR spectra of peptides. Biopolymers. 1971 Nov;10(11):2113–2131. doi: 10.1002/bip.360101108. [DOI] [PubMed] [Google Scholar]
  24. Reynolds W. F., Peat I. R., Freedman M. H., Lyerla J. R., Jr Determination of the tautomeric form of the imidazole ring of L-histidine in basic solution by carbon-13 magnetic resonance spectroscopy. J Am Chem Soc. 1973 Jan 24;95(2):328–331. doi: 10.1021/ja00783a006. [DOI] [PubMed] [Google Scholar]
  25. Urry D. W., Ohnishi M., Walter R. Secondary structure of the cyclic moiety of the peptide hormone oxytocin and its deamino analog. Proc Natl Acad Sci U S A. 1970 May;66(1):111–116. doi: 10.1073/pnas.66.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Urry D. W., Walter R. Proposed conformation of oxytocin in solution. Proc Natl Acad Sci U S A. 1971 May;68(5):956–958. doi: 10.1073/pnas.68.5.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Von Dreele P. H., Brewster A. I., Bovey F. A., Scheraga H. A., Ferger M. F., Du Vigneaud V. Nuclear magnetic resonance studies of lysine-vasopressin: structural constraints. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3088–3091. doi: 10.1073/pnas.68.12.3088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Von Dreele P. H., Brewster A. I., Dadok J., Scheraga H. A., Bovey F. A., Ferger M. F., Du Vigneaud V. Nuclear magnetic resonance spectrum of lysine-vasopressin in aqueous solution and its structural implictions. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2169–2173. doi: 10.1073/pnas.69.8.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Von Dreele P. H., Brewster A. I., Scheraga H. A., Ferger M. F., Du Vigneaud V. Nuclear magnetic resonance spectrum of lysine-vasopressin and its structural implications. Proc Natl Acad Sci U S A. 1971 May;68(5):1028–1031. doi: 10.1073/pnas.68.5.1028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Walter R., Glickson J. D., Schwartz I. L., Havran R. T., Meienhofer J., Urry D. W. Conformation of lysine vasopressin: a comparison with oxytocin. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1920–1924. doi: 10.1073/pnas.69.7.1920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weigert F. J., Roberts J. D. Nuclear magnetic resonance spectroscopy. Carbon-carbon coupling. J Am Chem Soc. 1972 Aug 23;94(17):6021–6025. doi: 10.1021/ja00772a014. [DOI] [PubMed] [Google Scholar]
  32. Wüthrich K., Tun-Kyi A., Schwyzer R. Manifestation in the 13C-NMR spectra of two different molecular conformations of a cyclic pentapeptide. FEBS Lett. 1972 Sep 1;25(1):104–108. doi: 10.1016/0014-5793(72)80464-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES