Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jul;70(7):2122–2123. doi: 10.1073/pnas.70.7.2122

Acceleration of the Rate of Deamidation of GlyArgAsnArgGly and of Human Transferrin by Addition of l-Ascorbic Acid

Arthur B Robinson 1, Karen Irving 1, Mary McCrea 1
PMCID: PMC433679  PMID: 4516209

Abstract

Experiments on the model peptide, GlyArgAsnArgGly, and the protein, human transferrin, have shown that hydrolytic deamidation of these molecules is markedly accelerated by addition of physiologically significant concentrations of l-ascorbic acid. Since hydrolytic demidation has been suggested as an important timer of biological events, the effects on hydrolytic deamidation of substances that are normally present in living organisms and are subject to nutritional control are of special relevance.

Keywords: molecular “timer”, nutrition, vitamin C

Full text

PDF
2122

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison J. H., Stewart M. A. Quantitative analysis of ascorbic acid in tissues by gas-liquid chromatography. Anal Biochem. 1971 Oct;43(2):401–409. doi: 10.1016/0003-2697(71)90270-3. [DOI] [PubMed] [Google Scholar]
  2. Barakat M. Z., Shehab S. K., Darwish N., Afify N. The ascorbic acid content of edible raw foodstuffs. Bull Acad Pol Sci Biol. 1970;18(1):1–5. [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. Dorr P. E., Nockels C. F. Effects of aging and dietary ascorbic acid on tissue ascorbic acid in the domestic hen. Poult Sci. 1971 Sep;50(5):1375–1382. doi: 10.3382/ps.0501375. [DOI] [PubMed] [Google Scholar]
  5. FORMAN D. T. RAPID DETERMINATION OF PLASMA AMMONIA BY AN ION-EXCHANGE TECHNIC. Clin Chem. 1964 Jun;10:497–508. [PubMed] [Google Scholar]
  6. Flatmark T. Multiple molecular forms of bovine heart cytochrome c. V. A comparative study of their physicochemical properties and their reactions in biological systems. J Biol Chem. 1967 May 25;242(10):2454–2459. [PubMed] [Google Scholar]
  7. Flatmark T. On the heterogeneity of beef heart cytochrome c. 3. A kinetic study of the non-enzymic deamidation of the main subfractions (Cy I-Cy 3). Acta Chem Scand. 1966;20(6):1487–1496. doi: 10.3891/acta.chem.scand.20-1487. [DOI] [PubMed] [Google Scholar]
  8. Flatmark T., Sletten K. Multiple forms of cytochrome c in the rat. Precursor-product relationship between the main component Cy I and the minor components Cy II and Cy 3 in vivo. J Biol Chem. 1968 Apr 10;243(7):1623–1629. [PubMed] [Google Scholar]
  9. Hughes R. E., Hurley R. J., Jones P. R. Retention of ascorbic acid by the guinea pig eye lens. Exp Eye Res. 1971 Jul;12(1):39–43. doi: 10.1016/0014-4835(71)90126-6. [DOI] [PubMed] [Google Scholar]
  10. Lenard J., Robinson A. B. Use of hydrogen fluoride in Merrifield solid-phase peptide synthesis. J Am Chem Soc. 1967 Jan 4;89(1):181–182. doi: 10.1021/ja00977a057. [DOI] [PubMed] [Google Scholar]
  11. Marglin A., Merrifield R. B. The synthesis of bovine insulin by the solid phase method. J Am Chem Soc. 1966 Nov 5;88(21):5051–5052. doi: 10.1021/ja00973a068. [DOI] [PubMed] [Google Scholar]
  12. Palmer W. G., Papaconstantinou J. Aging of alpha-crystallins during development of the lens. Proc Natl Acad Sci U S A. 1969 Sep;64(1):404–410. doi: 10.1073/pnas.64.1.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pauling L. Orthomolecular psychiatry. Varying the concentrations of substances normally present in the human body may control mental disease. Science. 1968 Apr 19;160(3825):265–271. doi: 10.1126/science.160.3825.265. [DOI] [PubMed] [Google Scholar]
  14. Penney J. R., Zilva S. S. The fixation and retention of ascorbic acid by the guinea-pig. Biochem J. 1946;40(5-6):695–706. doi: 10.1042/bj0400695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roberts R., Makey D. G., Seal U. S. Human transferrin. Molecular weight and sedimentation properties. J Biol Chem. 1966 Nov 10;241(21):4907–4913. [PubMed] [Google Scholar]
  16. Robinson A. B., McKerrow J. H., Cary P. Controlled deamidation of peptides and proteins: an experimental hazard and a possible biological timer. Proc Natl Acad Sci U S A. 1970 Jul;66(3):753–757. doi: 10.1073/pnas.66.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SCHAFFERT R. R., KINGSLEY G. R. A rapid, simple method for the determination of reduced, dehydro-, and total ascorbic acid in biological material. J Biol Chem. 1955 Jan;212(1):59–68. [PubMed] [Google Scholar]
  18. SINEX F. M. Aging and the lability of irreplaceable molecules-II. The amide groups of collagen. J Gerontol. 1960 Jan;15:15–18. doi: 10.1093/geronj/15.1.15. [DOI] [PubMed] [Google Scholar]
  19. Wagner F., Hofmann K. D., Preibsch W., Koob G. Uber den Askorbinsäuregehalt im menschlichen Ovar. Zentralbl Gynakol. 1970 Aug 15;92(33):1060–1061. [PubMed] [Google Scholar]
  20. Wherrett J. R., Tower D. B. Glutamyl, aspartyl and amide moieties of cerebral proteins: metabolic aspects in vitro. J Neurochem. 1971 Jun;18(6):1027–1042. doi: 10.1111/j.1471-4159.1971.tb12032.x. [DOI] [PubMed] [Google Scholar]
  21. Zloch Z., Ginter E. Thin-layer chromatographic determination of L-ascorbic, L-dehydroascorbic nd 2.3-diketo-L-gulonic acids in animal tissues, blood and urine. Z Klin Chem Klin Biochem. 1970 May;8(3):302–305. doi: 10.1515/cclm.1970.8.3.302. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES