Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Jul;70(7):2167–2170. doi: 10.1073/pnas.70.7.2167

Variation of Type-B DNA X-Ray Fiber Diagrams with Base Composition

Stanley Bram 1
PMCID: PMC433689  PMID: 4352977

Abstract

Eight natural DNAs of widely differing base composition have been studied by x-ray diffraction in fibers at high relative humidity. The resulting type B diffraction diagrams showed that all of the DNAs had a 34-Å pitch and 3.4-Å interbase pair separation. However, the intensity distribution on the inner three layer lines was a strong function of the base content. In diffraction diagrams of very AT-rich DNA, the intensity of the first and third layer line was 2- or 3-times stronger than in the patterns of GC-rich DNA. These high humidity diffraction patterns agree with x-ray scattering from solutions of DNA. The results are interpreted to imply that each AT base pair may have a different cross section than a GC pair. If this is so, it would appreciably alter the currently held ideas concerning DNA recognition.

Keywords: DNA structure, x-ray fiber diffraction, dependence on base composition

Full text

PDF
2167

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anet R., Strayer D. R. Sodium iodide density gradients for the preparative buoyant density separations of DNA mixtures. Biochem Biophys Res Commun. 1969 Sep 24;37(1):52–58. doi: 10.1016/0006-291x(69)90879-1. [DOI] [PubMed] [Google Scholar]
  2. Bram M. S. Etude préliminaire de diagrammes de diffraction de rayons X des fibres de différents ADN á forte humidité. C R Acad Sci Hebd Seances Acad Sci D. 1973 Jan 22;276(4):657–658. [PubMed] [Google Scholar]
  3. Bram S., Beeman W. W. On the cross-section structure of deoxyribonucleic acid in solution. J Mol Biol. 1971 Feb 14;55(3):311–324. doi: 10.1016/0022-2836(71)90320-2. [DOI] [PubMed] [Google Scholar]
  4. Bram S. II. The polymorphism of natural DNA. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1088–1092. doi: 10.1016/0006-291x(72)90820-0. [DOI] [PubMed] [Google Scholar]
  5. Bram S. Secondary structure of DNA depends on base composition. Nat New Biol. 1971 Aug 11;232(2):174–176. doi: 10.1038/newbio232174a0. [DOI] [PubMed] [Google Scholar]
  6. Bram S., Tougard P. Polymorphism of natural DNA. Nat New Biol. 1972 Oct 4;239(92):128–131. doi: 10.1038/newbio239128a0. [DOI] [PubMed] [Google Scholar]
  7. Cooper P. J., Hamilton L. D. The A-B conformational change in the sodium salt of DNA. J Mol Biol. 1966 Apr;16(2):562–563. doi: 10.1016/s0022-2836(66)80193-6. [DOI] [PubMed] [Google Scholar]
  8. FRANKLIN R. E., GOSLING R. G. Molecular configuration in sodium thymonucleate. Nature. 1953 Apr 25;171(4356):740–741. doi: 10.1038/171740a0. [DOI] [PubMed] [Google Scholar]
  9. HAMILTON L. D., BARCLAY R. K., WILKINS M. H., BROWN G. L., WILSON H. R., MARVIN D. A., EPHRUSSI-TAYLOR H., SIMMONS N. S. Similarity of the structure of DNA from a variety of sources. J Biophys Biochem Cytol. 1959 May 25;5(3):397–404. doi: 10.1083/jcb.5.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MARVIN D. A., SPENCER M., WILKINS M. H., HAMILTON L. D. The molecular configuration of deoxyribonucleic acid. III. X-ray diffraction study of the C form of the lithium salt. J Mol Biol. 1961 Oct;3:547–565. doi: 10.1016/s0022-2836(61)80021-1. [DOI] [PubMed] [Google Scholar]
  11. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  12. WILKINS M. H. F., STOKES A. R., WILSON H. R. Molecular structure of deoxypentose nucleic acids. Nature. 1953 Apr 25;171(4356):738–740. doi: 10.1038/171738a0. [DOI] [PubMed] [Google Scholar]
  13. Zeiger R. S., Salomon R., Dingman C. W., Peacock A. C. Role of base composition in the electrophoresis of microbial and crab DNA in polyacrylamide gels. Nat New Biol. 1972 Jul 19;238(81):65–69. doi: 10.1038/newbio238065a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES