Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Aug;70(8):2193–2195. doi: 10.1073/pnas.70.8.2193

Conformation of Charged and Uncharged tRNAPhe

Yeng P Wong *, Brian R Reid , David R Kearns *
PMCID: PMC433699  PMID: 4599618

Abstract

The effect of aminoacylation on the conformation of yeast tRNAPhe was investigated by high-resolution (300 MHz) proton nuclear magnetic resonance (NMR) spectroscopy. Resonances in the low-field (-11 to -15 ppm) region of the spectra are due to ring NH protons of Watson-Crick base pairs, and to a very high degree of approximation (within 0.05 ppm) the low-field spectra of tRNAPhe and phenylalanyl-tRNAPhe are identical. From this observation and analysis of the low-field NMR spectra we conclude that the secondary structures of the two tRNAs are identical with respect to base-pairing schemes and interbase distances in the helical region (0.1-0.2 Å). Several tertiary structural features, including conformation of the dihydro-U loop, conformation of the minor loop, relative orientations of the acceptor and the TΨC stems, dihydro-U and anticodon stems, and probably conformation of the anticodon loop are shown to be the same in tRNAPhe and phenylalanyl-tRNAPhe. Our results leave little remaining opportunity for changes in tertiary structure that would not have been observed by the NMR method.

Keywords: base-pairing, 300 MHz proton nuclear magnetic resonance

Full text

PDF
2193

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Fasman G. D. Circular dichroism of valine and formylmethionine transfer RNA from Escherichia coli: effect of aminoacylation. Biochim Biophys Acta. 1970 Mar 19;204(1):183–190. doi: 10.1016/0005-2787(70)90501-0. [DOI] [PubMed] [Google Scholar]
  2. Cohn M., Danchin A., Grunberg-Manago M. Proton magnetic relaxation studies of marganous complexes of transfer RNA and related compounds. J Mol Biol. 1969 Jan 14;39(1):199–217. doi: 10.1016/0022-2836(69)90342-8. [DOI] [PubMed] [Google Scholar]
  3. Danchin A., Grunberg-Manago M. Differences in binding of oligo C to charged and uncharged tRNA. FEBS Lett. 1970 Sep 7;9(6):327–330. doi: 10.1016/0014-5793(70)80391-x. [DOI] [PubMed] [Google Scholar]
  4. Englander J. J., Kallenbach N. R., Englander S. W. Hydrogen exchange study of some polynucleotides and transfer RNA. J Mol Biol. 1972 Jan 14;63(1):153–169. doi: 10.1016/0022-2836(72)90527-x. [DOI] [PubMed] [Google Scholar]
  5. Gantt R. R., Englander S. W., Simpson M. V. Hydrogen-exchange measurements on Escherichia coli transfer ribonucleic acid before, after, and during its aminoacylation. Biochemistry. 1969 Feb;8(2):475–482. doi: 10.1021/bi00830a003. [DOI] [PubMed] [Google Scholar]
  6. Hänggi U. J., Zachau H. G. Partial nuclease digestion of transfer ribonucleic acids and aminoacylated transfer ribonucleic acids. Eur J Biochem. 1971 Feb;18(4):496–502. doi: 10.1111/j.1432-1033.1971.tb01269.x. [DOI] [PubMed] [Google Scholar]
  7. ISHIDA T. HETEROGENEITY IN THE NUCLEOTIDE SEQUENCE NEAR THE AMINO ACID-ACCEPTING TERMINAL OF TRANSFER RNA. J Mol Biol. 1965 Feb;11:341–357. doi: 10.1016/s0022-2836(65)80062-6. [DOI] [PubMed] [Google Scholar]
  8. Kearns D. R., Patel D. J., Shulman R. G. High resolution nuclear magnetic resonance studies of hydrogen bonded protons of tRNA in water. Nature. 1971 Jan 29;229(5283):338–339. doi: 10.1038/229338a0. [DOI] [PubMed] [Google Scholar]
  9. Kearns D. R., Patel D., Shulman R. G., Yamane T. High resolution nuclear magnetic resonance study of base pairing in four purified transfer RNA molecules. J Mol Biol. 1971 Oct 14;61(1):265–270. doi: 10.1016/0022-2836(71)90224-5. [DOI] [PubMed] [Google Scholar]
  10. Rajbhandary U. L., Chang S. H., Stuart A., Faulkner R. D., Hoskinson R. M., Khorana H. G. Studies on polynucleotides, lxviii the primary structure of yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1967 Mar;57(3):751–758. doi: 10.1073/pnas.57.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sarin P. S., Zamecnik P. C. Conformational differences between s-RNA and aminoacyl s-RNA. Biochem Biophys Res Commun. 1965 Aug 16;20(4):400–405. doi: 10.1016/0006-291x(65)90590-5. [DOI] [PubMed] [Google Scholar]
  12. Schmidt J., Buchardt B., Reid B. R. Effect of cleaving the dihydrouridine loop and the ribothymidine loop on the amino acid acceptor activity of yeast phenylalanine transfer ribonucleic acid. J Biol Chem. 1970 Nov 10;245(21):5743–5750. [PubMed] [Google Scholar]
  13. Schofield P. Isolation and some properties of methionine transfer ribonucleic acid from Escherichia coli. Biochemistry. 1970 Apr 14;9(8):1694–1700. doi: 10.1021/bi00810a007. [DOI] [PubMed] [Google Scholar]
  14. Smith I. C., Yamane T., Shulman R. G. Proton magnetic resonance studies at 220 MHz of alanine transfer RNA. Can J Biochem. 1969 Apr;47(4):480–484. doi: 10.1139/o69-075. [DOI] [PubMed] [Google Scholar]
  15. Wimmer E., Maxwell I. H., Tener G. M. A simple method for isolating highly purified yeast phenylalanine transfer ribonucleic acid. Biochemistry. 1968 Jul;7(7):2623–2628. doi: 10.1021/bi00847a026. [DOI] [PubMed] [Google Scholar]
  16. Woese C. Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature. 1970 May 30;226(5248):817–820. doi: 10.1038/226817a0. [DOI] [PubMed] [Google Scholar]
  17. Wong Y. P., Kearns D. R., Reid B. R., Shulman R. G. Investigation of exchangeable protons and the extent of base pairings in yeast phenylalanine transfer RNA by high resolution nuclear magnetic resonance. J Mol Biol. 1972 Dec 30;72(3):725–740. doi: 10.1016/0022-2836(72)90187-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES