Abstract
Initial exposure of cultured limb-bud cells (stage 23-24) to 5-bromo-2′-deoxyuridine (BrdU) irreversibly inhibits differentiation to cartilage under three different culture conditions. The inhibition of chondroitin sulfate synthesis is partially reversed by D-xylose in limb-bud cells after treatment with BrdU. The activities of four enzymes involved in chondroitin sulfate production were reduced in BrdU-treated cultures, but the magnitude of decrease was far less than the decrease in glycosaminoglycan synthesis. The slight increase in the turnover rate of sulfated glycosaminoglycans in BrdU-treated mesenchyme was not sufficient to account for the marked decrease in chondroitin sulfate content. The results suggest that BrdU treatment interferes with normal synthesis of chondroitin sulfate core protein in cultured limb-bud cells, but does not greatly diminish enzyme activities or UDP-sugar levels necessary for production of polysaccharide chains.
Keywords: differentiation, glycosaminoglycans, D-xylose, enzymes
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott J., Holtzer H. The loss of phenotypic traits by differentiated cells, V. The effect of 5-bromodeoxyuridine on cloned chondrocytes. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1144–1151. doi: 10.1073/pnas.59.4.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abbott J., Mayne R., Holtzer H. Inhibition of cartilage development in organ cultures of chick somites by the thymidine analog, 5-bromo-2'-deoxyuridine. Dev Biol. 1972 Jun;28(2):430–442. doi: 10.1016/0012-1606(72)90024-3. [DOI] [PubMed] [Google Scholar]
- Bischoff R. Acid mucopolysaccharide synthesis by chick amnion cell cultures. Inhibition by 5-bromodeoxyuridine. Exp Cell Res. 1971 May;66(1):224–236. doi: 10.1016/s0014-4827(71)80032-0. [DOI] [PubMed] [Google Scholar]
- Britten R. J., Davidson E. H. Gene regulation for higher cells: a theory. Science. 1969 Jul 25;165(3891):349–357. doi: 10.1126/science.165.3891.349. [DOI] [PubMed] [Google Scholar]
- Coleman A. W., Coleman J. R., Kankel D., Werner I. The reversible control of animal cell differentiation by the thymidine analog, 5-bromodeoxyuridine. Exp Cell Res. 1970 Feb;59(2):319–328. doi: 10.1016/0014-4827(70)90606-3. [DOI] [PubMed] [Google Scholar]
- Dorfman A., Ho P. L. Synthesis of acid mucopolysaccharides by glial tumor cells in tissue culture. Proc Natl Acad Sci U S A. 1970 Jun;66(2):495–499. doi: 10.1073/pnas.66.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franco-Browder S., Rydt J. D., Dorfman A. THE IDENTIFICATION OF A SULFATED MUCOPOLYSACCHARIDE IN CHICK EMBRYOS, STAGES 11-23. Proc Natl Acad Sci U S A. 1963 May;49(5):643–647. doi: 10.1073/pnas.49.5.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gainey P. A., Phelps C. F. Uridine diphosphate glucuronic acid production and utilization in various tissues actively synthesizing glycosaminoglycans. Biochem J. 1972 Jun;128(2):215–227. doi: 10.1042/bj1280215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holliday R., Tarrant G. M. Altered enzymes in ageing human fibroblasts. Nature. 1972 Jul 7;238(5358):26–30. doi: 10.1038/238026a0. [DOI] [PubMed] [Google Scholar]
- Holthausen H. S., Chacko S., Davidson E. A., Holtzer H. Effect of 5-bromodeoxyuridine on expression of cultured chondrocytes grown in vitro. Proc Natl Acad Sci U S A. 1969 Jul;63(3):864–870. doi: 10.1073/pnas.63.3.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levitt D., Dorfman A. The irreversible inhibition of differentiation of limb-bud mesenchyme by bromodeoxyuridine. Proc Natl Acad Sci U S A. 1972 May;69(5):1253–1257. doi: 10.1073/pnas.69.5.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marzullo G. Regulation of cartilage enzymes in cultured chondrocytes and the effect of 5-bromodeoxyuridine. Dev Biol. 1972 Jan;27(1):20–26. doi: 10.1016/0012-1606(72)90109-1. [DOI] [PubMed] [Google Scholar]
- Medoff J. Enzymatic events during cartilage differentiation in the chick embryonic limb bud. Dev Biol. 1967 Aug;16(2):118–143. doi: 10.1016/0012-1606(67)90020-6. [DOI] [PubMed] [Google Scholar]
- Palmoski M. J., Goetinck P. F. Synthesis of proteochondroitin sulfate by normal, nanomelic, and 5-bromodeoxyuridine-treated chondrocytes in cell culture. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3385–3388. doi: 10.1073/pnas.69.11.3385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoolmiller A. C., Horwitz A. L., Dorfman A. Biosynthesis of the chondroitin sulfate proteoglycan. Purification and properties of xylosyltransferase. J Biol Chem. 1972 Jun 10;247(11):3525–3532. [PubMed] [Google Scholar]
- Turkington R. W., Majumder G. C., Riddle M. Inhibition of mammary gland differentiation in vitro by 5-bromo-2'-deoxyuridine. J Biol Chem. 1971 Mar 25;246(6):1814–1819. [PubMed] [Google Scholar]
- Van Hoof F., Hers H. G. The abnormalities of lysosomal enzymes in mucopolysacc- haridoses. Eur J Biochem. 1968 Dec;7(1):34–44. doi: 10.1111/j.1432-1033.1968.tb19570.x. [DOI] [PubMed] [Google Scholar]
- Weintraub H., Campbell G. L., Holtzer H. Identification of a developmental program using bromodeoxyuridine. J Mol Biol. 1972 Sep 28;70(2):337–350. doi: 10.1016/0022-2836(72)90543-8. [DOI] [PubMed] [Google Scholar]
