Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Aug;70(8):2443–2447. doi: 10.1073/pnas.70.8.2443

Guanosine 3′:5′-Cyclic Monophosphate and the Action of Insulin and Acetylcholine

Gennaro Illiano 1,2, Guy P E Tell 1,2, Marvin I Siegel 1,2, Pedro Cuatrecasas 1,2,*
PMCID: PMC433753  PMID: 4365701

Abstract

Low concentrations of insulin (120 μunits/ml) and of carbamylcholine (1 μM) increase cyclic GMP content in isolated fat cells by 350%. The maximal amount of cyclic GMP, achieved within 2 min after addition of insulin or carbamylcholine, falls rapidly for insulin and much more slowly for carbamylcholine. 10 pM Acetylcholine can also augment the content of fat-cell cyclic GMP, but by 5 min (37°) the amount falls to that of unstimulated cells. Atropine abolishes the effects of carbamylcholine and acetylcholine but does not modify that of insulin, indicating that the ability of insulin to regulate cyclic GMP levels is not mediated by cholinergic receptors. Insulin and carbamylcholine increase the concentration of cyclic GMP in rat-liver slices by 400%; the effects of both agents occur rapidly and are relatively transient. Insulin does not alter cyclic GMP concentrations in purified human peripheral lymphocytes or in rat-spleen lymphocytes, cells which possess few insulin receptors and which are insensitive to the metabolic effects of the hormone. Carbamylcholine, however, causes a substantial increase in the cyclic GMP content of these lymphocytes. The data support the view that close and reciprocal relationships may exist between the concentrations and actions of cyclic AMP and cyclic GMP, as well as between the enzymes responsible for biosynthesis and degradation of these nucleotides.

Keywords: cyclic AMP, fat cells, liver, receptors, lymphocytes, plant lectin, cell growth

Full text

PDF
2443

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butcher R. W., Baird C. E., Sutherland E. W. Effects of lipolytic and antilipolytic substances on adenosine 3',5'-monophosphate levels in isolated fat cells. J Biol Chem. 1968 Apr 25;243(8):1705–1712. [PubMed] [Google Scholar]
  2. Butcher R. W., Sneyd J. G., Park C. R., Sutherland E. W., Jr Effect of insulin on adenosine 3',5'-monophosphate in the rat epididymal fat pad. J Biol Chem. 1966 Apr 10;241(7):1651–1653. [PubMed] [Google Scholar]
  3. Byron J. W. Drug receptors and the haemopoietic stem cell. Nat New Biol. 1973 Jan 31;241(109):152–154. doi: 10.1038/newbio241152a0. [DOI] [PubMed] [Google Scholar]
  4. Cuatrecasas P. Insulin--receptor interactions in adipose tissue cells: direct measurement and properties. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1264–1268. doi: 10.1073/pnas.68.6.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cuatrecasas P. Properties of the insulin receptor isolated from liver and fat cell membranes. J Biol Chem. 1972 Apr 10;247(7):1980–1991. [PubMed] [Google Scholar]
  6. Cuatrecasas P., Tell G. P. Insulin-like activity of concanavalin A and wheat germ agglutinin--direct interactions with insulin receptors. Proc Natl Acad Sci U S A. 1973 Feb;70(2):485–489. doi: 10.1073/pnas.70.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Exton J. H., Lewis S. B., Ho R. J., Robison G. A., Park C. R. The role of cyclic AMP in the interaction of glucagon and insulin in the control of liver metabolism. Ann N Y Acad Sci. 1971 Dec 30;185:85–100. doi: 10.1111/j.1749-6632.1971.tb45239.x. [DOI] [PubMed] [Google Scholar]
  8. Ferrendelli J. A., Steiner A. L., McDougal D. B., Jr, Kipnis D. M. The effect of oxotremorine and atropine on cGMP and cAMP levels in mouse cerebral cortex and cerebellum. Biochem Biophys Res Commun. 1970 Nov 25;41(4):1061–1067. doi: 10.1016/0006-291x(70)90193-2. [DOI] [PubMed] [Google Scholar]
  9. George W. J., Polson J. B., O'Toole A. G., Goldberg N. D. Elevation of guanosine 3',5'-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci U S A. 1970 Jun;66(2):398–403. doi: 10.1073/pnas.66.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hadden J. W., Hadden E. M., Haddox M. K., Goldberg N. D. Guanosine 3':5'-cyclic monophosphate: a possible intracellular mediator of mitogenic influences in lymphocytes. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3024–3027. doi: 10.1073/pnas.69.10.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hadden J. W., Hadden E. M., Middleton E., Jr Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cell Immunol. 1970 Dec;1(6):583–595. doi: 10.1016/0008-8749(70)90024-9. [DOI] [PubMed] [Google Scholar]
  12. Hardman J. G., Sutherland E. W. Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3',5'-monophosphate from guanosine trihosphate. J Biol Chem. 1969 Dec 10;244(23):6363–6370. [PubMed] [Google Scholar]
  13. Hepp K. D. Inhibition of glucagon-stimulated adenyl cyclase by insulin. FEBS Lett. 1971 Jan 30;12(5):263–266. doi: 10.1016/0014-5793(71)80193-x. [DOI] [PubMed] [Google Scholar]
  14. Hepp K. D., Renner R. Insulin action on the adenyl cyclase system: Antagonism to activation by lipolytic hormones. FEBS Lett. 1972 Feb 1;20(2):191–194. doi: 10.1016/0014-5793(72)80791-9. [DOI] [PubMed] [Google Scholar]
  15. Hirschhorn R., Grossman J., Weissmann G. Effect of cyclic 3',5'-adenosine monophosphate and theophylline on lymphocyte transformation. Proc Soc Exp Biol Med. 1970 Apr;133(4):1361–1365. doi: 10.3181/00379727-133-34690. [DOI] [PubMed] [Google Scholar]
  16. Illiano G., Cuatrecasas P. Modulation of adenylate cyclase activity in liver and fat cell membranes by insulin. Science. 1972 Feb 25;175(4024):906–908. doi: 10.1126/science.175.4024.906. [DOI] [PubMed] [Google Scholar]
  17. Jefferson L. S., Exton J. H., Butcher R. W., Sutherland E. W., Park C. R. Role of adenosine 3',5'-monophosphate in the effects of insulin and anti-insulin serum on liver metabolism. J Biol Chem. 1968 Mar 10;243(5):1031–1038. [PubMed] [Google Scholar]
  18. Jiménez de Asúa L., Surian E. S., Flawia M. M., Torres H. N. Effect of insulin on the growth pattern and adenylate cyclase activity of BHK fibroblasts. Proc Natl Acad Sci U S A. 1973 May;70(5):1388–1392. doi: 10.1073/pnas.70.5.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Krug U., Krug F., Cuatrecasas P. Emergence of insulin receptors on human lymphocytes during in vitro transformation. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2604–2608. doi: 10.1073/pnas.69.9.2604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. VI. Isolation and partial purification of a protein kinase activated by guanosine 3',5'-monophosphate. J Biol Chem. 1970 May 25;245(10):2493–2498. [PubMed] [Google Scholar]
  21. Kuo J. F., Lee T. P., Reyes P. L., Walton K. G., Donnelly T. E., Jr, Greengard P. Cyclic nucleotide-dependent protein kinases. X. An assay method for the measurement of quanosine 3',5'-monophosphate in various biological materials and a study of agents regulating its levels in heart and brain. J Biol Chem. 1972 Jan 10;247(1):16–22. [PubMed] [Google Scholar]
  22. Lee T. P., Kuo J. F., Greengard P. Regulation of myocardial cyclic AMP by isoproterenol, glucagon and acetylcholine. Biochem Biophys Res Commun. 1971 Nov;45(4):991–997. doi: 10.1016/0006-291x(71)90435-9. [DOI] [PubMed] [Google Scholar]
  23. Lee T. P., Kuo J. F., Greengard P. Role of muscarinic cholinergic receptors in regulation of guanosine 3':5'-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3287–3291. doi: 10.1073/pnas.69.11.3287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Loten E. G., Sneyd J. G. An effect of insulin on adipose-tissue adenosine 3':5'-cyclic monophosphate phosphodiesterase. Biochem J. 1970 Nov;120(1):187–193. doi: 10.1042/bj1200187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Manganiello V. C., Murad F., Vaughan M. Effects of lipolytic and antilipolytic agents on cyclic 3',5'-adenosine monophosphate in fat cells. J Biol Chem. 1971 Apr 10;246(7):2195–2202. [PubMed] [Google Scholar]
  26. Murad F., Manganiello V., Vaughan M. A simple, sensitive protein-binding assay for guanosine 3':5'-monophosphate. Proc Natl Acad Sci U S A. 1971 Apr;68(4):736–739. doi: 10.1073/pnas.68.4.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Novogrodsky A., Katchalski E. Membrane site modified on induction of the transformation of lymphocytes by periodate. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3207–3210. doi: 10.1073/pnas.69.11.3207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  29. Smith J. W., Steiner A. L., Parker C. W. Human lymphocytic metabolism. Effects of cyclic and noncyclic nucleotides on stimulation by phytohemagglutinin. J Clin Invest. 1971 Feb;50(2):442–448. doi: 10.1172/JCI106511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Strom T. B., Deisseroth A., Morganroth J., Carpenter C. B., Merrill J. P. Alteration of the cytotoxic action of sensitized lymphocytes by cholinergic agents and activators of adenylate cyclase. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2995–2999. doi: 10.1073/pnas.69.10.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tell G. P., Cuatrecasas P., Van Wyk J. J., Hintz R. L. Somatomedin: inhibiton of adenylate cyclase activity in subcellular membranes of various tissues. Science. 1973 Apr 20;180(4083):312–315. doi: 10.1126/science.180.4083.312. [DOI] [PubMed] [Google Scholar]
  32. Triner L., Vulliemoz Y., Verosky M., Nahas G. G. Acetylcholine and the cyclic AMP system in smooth muscle. Biochem Biophys Res Commun. 1972 Mar 10;46(5):1866–1873. doi: 10.1016/0006-291x(72)90063-0. [DOI] [PubMed] [Google Scholar]
  33. White A. A., Aurbach G. D. Detection of guanyl cyclase in mammalian tissues. Biochim Biophys Acta. 1969;191(3):686–697. doi: 10.1016/0005-2744(69)90362-3. [DOI] [PubMed] [Google Scholar]
  34. Winchurch R., Ishizuka M., Webb D., Braun W. Adenyl cyclase activity of spleen cells exposed to immunoenhancing synthetic oligo- and polynucleotides. J Immunol. 1971 May;106(5):1399–1400. [PubMed] [Google Scholar]
  35. Yamashita K., Field J. B. Elevation of cyclic guanosine 3',5'-monophosphate levels in dog thyroid slices caused by acetylcholine and sodium fluoride. J Biol Chem. 1972 Nov 10;247(21):7062–7066. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES