Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Sep;71(9):3325–3328. doi: 10.1073/pnas.71.9.3325

Backbone Conformations in Secondary and Tertiary Structural Units of Nucleic Acids. Constraint in the Phosphodiester Conformation*

N Yathindra 1, M Sundaralingam 1
PMCID: PMC433763  PMID: 4530303

Abstract

The possible backbone phosphodiester conformations in a dinucleoside monophosphate and a dinucleoside triphosphate have been investigated by semiempirical energy calculations. Conformational energies have been computed as a function of the rotations ω′ and ω about the internucleotide P-O(3′) and P-O(5′) linkages, with the nucleotide residues themselves assumed to be in one of the preferred [C(3′)-endo] conformations. The terminal phosphates in a dinucleoside triphosphate greatly limit the possible conformations for the backbone (in a polynucleotide) compared to a dinucleoside monophosphate. There appear to be two major types of conformations that are favored for the backbone. The phosphodiester conformation (ω′,ω) ≃ (290°,290°) characteristic of helical structures is one of them, indicating that the polynucleotide backbone shows an inherent tendency for the helical conformation. The other favored conformation is centered at (ω′,ω) ≃ (190°,300°) and results in an extended backbone structure with unstacked bases. A third possible conformation centered at (ω′, ω) ≃ (200°, 60°) and the (190°, 300°) conformation appear to be important for the folding of a polynucleotide chain. The conformation (ω′,ω) ≃ (80°,80°), observed in a dinucleoside monophosphate and believed to be a candidate for producing an abrupt turn in a polynucleotide chain, is found to be stereochemically unfavorable in a dinucleoside triphosphate and a polynucleotide.

Keywords: energy calculation; polynucleotide backbone; constrained phosphodiester conformation; dinucleoside mono-, di-, and triphosphates

Full text

PDF
3325

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Camerman N., Fawcett J. K., Camerman A. Structure of a dinucleotide: thymidylyl-(5'-3')-thymidylate-5' (pTpT). Science. 1973 Dec 14;182(4117):1142–1143. doi: 10.1126/science.182.4117.1142. [DOI] [PubMed] [Google Scholar]
  2. Day R. O., Seeman N. C., Rosenberg J. M., Rich A. A crystalline fragment of the double helix: the structure of the dinucleoside phosphate guanylyl-3',5'-cytidine. Proc Natl Acad Sci U S A. 1973 Mar;70(3):849–853. doi: 10.1073/pnas.70.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Newton M. D. A model conformational study of nucleic acid phosphate ester bonds. The torsional potential of dimethyl phosphate monoanion. J Am Chem Soc. 1973 Jan 10;95(1):256–258. doi: 10.1021/ja00782a055. [DOI] [PubMed] [Google Scholar]
  4. Olson W. K., Flory P. J. Spatial configuration of polynucleotide chains. II. Conformational energies and the average dimensions of polyribonucleotides. Biopolymers. 1972 Jan;11(1):25–56. doi: 10.1002/bip.1972.360110103. [DOI] [PubMed] [Google Scholar]
  5. Pullman B., Perahia D., Saran A. Molecular orbital calculations on the conformation of nucleic acids and their constituents. 3. Backbone structure of di- and polynucleotides. Biochim Biophys Acta. 1972 Apr 26;269(1):1–14. doi: 10.1016/0005-2787(72)90068-8. [DOI] [PubMed] [Google Scholar]
  6. Rao S. T., Sundaralingam M. Stereochemistry of nucleic acids and their constituents. 13. The crystal and molecular structure of 3'-O-acetyladenosine. Conformational analysis of nucleosides and nucleotides with syn glycosidic torsional angle. J Am Chem Soc. 1970 Aug 12;92(16):4963–4970. doi: 10.1021/ja00719a033. [DOI] [PubMed] [Google Scholar]
  7. Renugopalakrishnan V., Lakshminarayanan A. V., Sasisekharan V. Stereochemistry of nucleic acids and polynucleotides. 3. Electronic charge distribution. Biopolymers. 1971;10(7):1159–1167. doi: 10.1002/bip.360100707. [DOI] [PubMed] [Google Scholar]
  8. Rosenberg J. M., Seeman N. C., Kim J. J., Suddath F. L., Nicholas H. B., Rich A. Double helix at atomic resolution. Nature. 1973 May 18;243(5403):150–154. doi: 10.1038/243150a0. [DOI] [PubMed] [Google Scholar]
  9. Rubin J., Brennan T., Sundaralingam M. Crystal and molecular structure of a naturally occurring dinucleoside monophosphate. Uridylyl-(3'-5')-adenosine hemihydrate. Conformational "rigidity" of the nucleotide unit and models for polynucleotide chain folding. Biochemistry. 1972 Aug 1;11(16):3112–3128. doi: 10.1021/bi00766a027. [DOI] [PubMed] [Google Scholar]
  10. Saran A., Govil G. Quantum chemical studies on the conformational structure of nucleic acids. 3. Calculation of backbone structure by extended Hückel theory. J Theor Biol. 1971 Nov;33(2):407–418. doi: 10.1016/0022-5193(71)90074-9. [DOI] [PubMed] [Google Scholar]
  11. Stellman S. D., Hingerty B., Broyde S. B., Subramanian E., Sato T., Langridge R. Structure of guanosine-3',5'-cytidine monophosphate. I. Semi-empirical potential energy calculations and model-building. Biopolymers. 1973 Dec;12(12):2731–2750. doi: 10.1002/bip.1973.360121208. [DOI] [PubMed] [Google Scholar]
  12. Suck D., Manor P. C., Germain G., Schwalbe C. H., Weimann G., Saenger W. X-ray study of helix, loop and base pair stacking in trinucleoside diphosphate ApApA. Nat New Biol. 1973 Dec 12;246(154):161–165. doi: 10.1038/newbio246161a0. [DOI] [PubMed] [Google Scholar]
  13. Sussman J. L., Seeman N. C., Kim S. H., Berman H. M. Crystal structure of a naturally occurring dinucleoside phoaphate: uridylyl 3',5'-adenosine phosphate model for RNA chain folding. J Mol Biol. 1972 May 28;66(3):403–421. doi: 10.1016/0022-2836(72)90423-8. [DOI] [PubMed] [Google Scholar]
  14. Yathindra N., Sundaralingam M. Potential energy calculations on conformations of puromycin and 3'-terminal aminoacyl adenosines of transfer RNAs. Biochim Biophys Acta. 1973 Apr 21;308(7):17–27. doi: 10.1016/0005-2787(73)90117-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES