Abstract
The possible backbone phosphodiester conformations in a dinucleoside monophosphate and a dinucleoside triphosphate have been investigated by semiempirical energy calculations. Conformational energies have been computed as a function of the rotations ω′ and ω about the internucleotide P-O(3′) and P-O(5′) linkages, with the nucleotide residues themselves assumed to be in one of the preferred [C(3′)-endo] conformations. The terminal phosphates in a dinucleoside triphosphate greatly limit the possible conformations for the backbone (in a polynucleotide) compared to a dinucleoside monophosphate. There appear to be two major types of conformations that are favored for the backbone. The phosphodiester conformation (ω′,ω) ≃ (290°,290°) characteristic of helical structures is one of them, indicating that the polynucleotide backbone shows an inherent tendency for the helical conformation. The other favored conformation is centered at (ω′,ω) ≃ (190°,300°) and results in an extended backbone structure with unstacked bases. A third possible conformation centered at (ω′, ω) ≃ (200°, 60°) and the (190°, 300°) conformation appear to be important for the folding of a polynucleotide chain. The conformation (ω′,ω) ≃ (80°,80°), observed in a dinucleoside monophosphate and believed to be a candidate for producing an abrupt turn in a polynucleotide chain, is found to be stereochemically unfavorable in a dinucleoside triphosphate and a polynucleotide.
Keywords: energy calculation; polynucleotide backbone; constrained phosphodiester conformation; dinucleoside mono-, di-, and triphosphates
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Camerman N., Fawcett J. K., Camerman A. Structure of a dinucleotide: thymidylyl-(5'-3')-thymidylate-5' (pTpT). Science. 1973 Dec 14;182(4117):1142–1143. doi: 10.1126/science.182.4117.1142. [DOI] [PubMed] [Google Scholar]
- Day R. O., Seeman N. C., Rosenberg J. M., Rich A. A crystalline fragment of the double helix: the structure of the dinucleoside phosphate guanylyl-3',5'-cytidine. Proc Natl Acad Sci U S A. 1973 Mar;70(3):849–853. doi: 10.1073/pnas.70.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newton M. D. A model conformational study of nucleic acid phosphate ester bonds. The torsional potential of dimethyl phosphate monoanion. J Am Chem Soc. 1973 Jan 10;95(1):256–258. doi: 10.1021/ja00782a055. [DOI] [PubMed] [Google Scholar]
- Olson W. K., Flory P. J. Spatial configuration of polynucleotide chains. II. Conformational energies and the average dimensions of polyribonucleotides. Biopolymers. 1972 Jan;11(1):25–56. doi: 10.1002/bip.1972.360110103. [DOI] [PubMed] [Google Scholar]
- Pullman B., Perahia D., Saran A. Molecular orbital calculations on the conformation of nucleic acids and their constituents. 3. Backbone structure of di- and polynucleotides. Biochim Biophys Acta. 1972 Apr 26;269(1):1–14. doi: 10.1016/0005-2787(72)90068-8. [DOI] [PubMed] [Google Scholar]
- Rao S. T., Sundaralingam M. Stereochemistry of nucleic acids and their constituents. 13. The crystal and molecular structure of 3'-O-acetyladenosine. Conformational analysis of nucleosides and nucleotides with syn glycosidic torsional angle. J Am Chem Soc. 1970 Aug 12;92(16):4963–4970. doi: 10.1021/ja00719a033. [DOI] [PubMed] [Google Scholar]
- Renugopalakrishnan V., Lakshminarayanan A. V., Sasisekharan V. Stereochemistry of nucleic acids and polynucleotides. 3. Electronic charge distribution. Biopolymers. 1971;10(7):1159–1167. doi: 10.1002/bip.360100707. [DOI] [PubMed] [Google Scholar]
- Rosenberg J. M., Seeman N. C., Kim J. J., Suddath F. L., Nicholas H. B., Rich A. Double helix at atomic resolution. Nature. 1973 May 18;243(5403):150–154. doi: 10.1038/243150a0. [DOI] [PubMed] [Google Scholar]
- Rubin J., Brennan T., Sundaralingam M. Crystal and molecular structure of a naturally occurring dinucleoside monophosphate. Uridylyl-(3'-5')-adenosine hemihydrate. Conformational "rigidity" of the nucleotide unit and models for polynucleotide chain folding. Biochemistry. 1972 Aug 1;11(16):3112–3128. doi: 10.1021/bi00766a027. [DOI] [PubMed] [Google Scholar]
- Saran A., Govil G. Quantum chemical studies on the conformational structure of nucleic acids. 3. Calculation of backbone structure by extended Hückel theory. J Theor Biol. 1971 Nov;33(2):407–418. doi: 10.1016/0022-5193(71)90074-9. [DOI] [PubMed] [Google Scholar]
- Stellman S. D., Hingerty B., Broyde S. B., Subramanian E., Sato T., Langridge R. Structure of guanosine-3',5'-cytidine monophosphate. I. Semi-empirical potential energy calculations and model-building. Biopolymers. 1973 Dec;12(12):2731–2750. doi: 10.1002/bip.1973.360121208. [DOI] [PubMed] [Google Scholar]
- Suck D., Manor P. C., Germain G., Schwalbe C. H., Weimann G., Saenger W. X-ray study of helix, loop and base pair stacking in trinucleoside diphosphate ApApA. Nat New Biol. 1973 Dec 12;246(154):161–165. doi: 10.1038/newbio246161a0. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Seeman N. C., Kim S. H., Berman H. M. Crystal structure of a naturally occurring dinucleoside phoaphate: uridylyl 3',5'-adenosine phosphate model for RNA chain folding. J Mol Biol. 1972 May 28;66(3):403–421. doi: 10.1016/0022-2836(72)90423-8. [DOI] [PubMed] [Google Scholar]
- Yathindra N., Sundaralingam M. Potential energy calculations on conformations of puromycin and 3'-terminal aminoacyl adenosines of transfer RNAs. Biochim Biophys Acta. 1973 Apr 21;308(7):17–27. doi: 10.1016/0005-2787(73)90117-2. [DOI] [PubMed] [Google Scholar]
