Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Sep;71(9):3395–3399. doi: 10.1073/pnas.71.9.3395

RNA Polymerase Assembly In Vitro. Temperature Dependence of Reactivation of Denatured Core Enzyme

John D Harding 1,2,*, Sherman Beychok 1,2,
PMCID: PMC433779  PMID: 4610575

Abstract

The Escherichia coli RNA polymerase core molecule, after denaturation in 6 M guanidine hydrochloride, can be completely reactivated in the absence of sigma subunit. Reactivation is temperature dependent. At 4° a renatured-inactive preparation is formed that has most of the secondary structure of the original native molecule but has a reduced sedimentation coefficient and a smaller Stokes radius and is, therefore, of lower molecular weight. Upon warming to 37° the renatured-inactive preparation is converted in a time-dependent process to the renatured-active preparation, which has the same amount of secondary structure and same molecular weight as native RNA polymerase. Since the renatured-inactive material is probably composed of subunit assemblies and can be readily reactivated, it should be useful for studying the subunit interactions and control of assembly of RNA polymerase.

Keywords: transcription, subunit enzymes, Escherichia coli

Full text

PDF
3395

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackers G. K. Analytical gel chromatography of proteins. Adv Protein Chem. 1970;24:343–446. doi: 10.1016/s0065-3233(08)60245-4. [DOI] [PubMed] [Google Scholar]
  2. Berg D., Chamberlin M. Physical studies on ribonucleic acid polymerase from Escherichia coli B. Biochemistry. 1970 Dec 22;9(26):5055–5064. doi: 10.1021/bi00828a003. [DOI] [PubMed] [Google Scholar]
  3. Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
  4. Burgess R. R. RNA polymerase. Annu Rev Biochem. 1971;40:711–740. doi: 10.1146/annurev.bi.40.070171.003431. [DOI] [PubMed] [Google Scholar]
  5. Burgess R. R. Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6168–6176. [PubMed] [Google Scholar]
  6. Deal W. C., Jr Metabolic control and structure of glycolytic enzymes. IV. Nicotinamide-adenine dinucleotide dependent in vitro reversal of dissociation and possible in vivo control of yeast glyceraldehyde 3-phosphate dehydrogenase synthesis. Biochemistry. 1969 Jul;8(7):2795–2805. doi: 10.1021/bi00835a016. [DOI] [PubMed] [Google Scholar]
  7. Heil A., Zillig W. Reconstitution of bacterial DNA-dependent RNA-polymerase from isolated subunits as a tool for the elucidation of the role of the subunits in transcription. FEBS Lett. 1970 Dec;11(3):165–168. doi: 10.1016/0014-5793(70)80519-1. [DOI] [PubMed] [Google Scholar]
  8. Hinkle D. C., Chamberlin M. J. Studies of the binding of Escherichia coli RNA polymerase to DNA. I. The role of sigma subunit in site selection. J Mol Biol. 1972 Sep 28;70(2):157–185. doi: 10.1016/0022-2836(72)90531-1. [DOI] [PubMed] [Google Scholar]
  9. Ishihama A., Fukuda R., Ito K. Subunits of RNA polymerase in function and structure. IV. Enhancing role of sigma in the subunit assembly of Escherichia coli RNA polymerase. J Mol Biol. 1973 Sep 5;79(1):127–136. doi: 10.1016/0022-2836(73)90274-x. [DOI] [PubMed] [Google Scholar]
  10. Ishihama A., Ito K. Subunits of RNA polymerase in function and structure. II. Reconstitution of Escherichia coli RNA polymerase from isolated subunits. J Mol Biol. 1972 Dec 14;72(1):111–123. doi: 10.1016/0022-2836(72)90073-3. [DOI] [PubMed] [Google Scholar]
  11. Lill U. I., Hartmann G. R. Reactivation of denatured RNA polymerase from E. coli. Biochem Biophys Res Commun. 1970 Jun 5;39(5):930–935. doi: 10.1016/0006-291x(70)90413-4. [DOI] [PubMed] [Google Scholar]
  12. Mangel W. F., Chamberlin M. J. Studies of ribonucleic acid chain initiation by Escherichia coli ribonucleic acid polymerase bound to T7 deoxyribonucleic acid. II. The effect of alterations in ionic strength of chain initiation and on the conformation of binary complexes. J Biol Chem. 1974 May 25;249(10):3002–3006. [PubMed] [Google Scholar]
  13. Novak R. L., Doty P. Optical rotatory dispersion and circular dichroism studies on Escherichia coli ribonucleic acid polymerase. Biochemistry. 1970 Apr 14;9(8):1739–1743. doi: 10.1021/bi00810a012. [DOI] [PubMed] [Google Scholar]
  14. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  15. Teipel J. W. In vitro assembly of aldolase. Kinetics of refolding, subunit reassociation, and reactivation. Biochemistry. 1972 Oct 24;11(22):4100–4107. doi: 10.1021/bi00772a012. [DOI] [PubMed] [Google Scholar]
  16. Teipel J. W., Koshland D. E., Jr Kinetic aspects of conformational changes in proteins. I. Rate of regain of enzyme activity from denatured proteins. Biochemistry. 1971 Mar 2;10(5):792–798. doi: 10.1021/bi00781a011. [DOI] [PubMed] [Google Scholar]
  17. Teipel J. W., Koshland D. E., Jr Kineticsspects of conformational changes in proteins. II. Structural changes in renaturation of denatured proteins. Biochemistry. 1971 Mar 2;10(5):798–805. doi: 10.1021/bi00781a012. [DOI] [PubMed] [Google Scholar]
  18. Travers A. A., Burgessrr Cyclic re-use of the RNA polymerase sigma factor. Nature. 1969 May 10;222(5193):537–540. doi: 10.1038/222537a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES