Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Sep;71(9):3532–3536. doi: 10.1073/pnas.71.9.3532

Excision of Damaged Thymine Residues from Gamma-Irradiated Poly(dA-dT) by Crude Extracts of Escherichia coli

P V Hariharan 1, P A Cerutti 1
PMCID: PMC433808  PMID: 4610578

Abstract

Crude extracts of E. coli endo I- and E. coli endo I-uvrA6- possess the ability to remove thymine products of the 5,6-dihydroxy-dihydrothymine type from γ-irradiated or osmium tetroxide-oxidized poly(dA-dT). It is shown that the uvrA-gene product, which is responsible for incision close to photodimers in prereplication ultraviolet repair in E. coli, is not required for, but may aid in, the excision of γ-ray products of the 5,6-dihydroxy-dihydrothymine type. Ring-damaged thymine products are also removed by E. coli extracts from osmium tetroxide-oxidized poly(dA-dT), which contains only 5,6-dihydroxy-dihydrothymine but no strand breakage, indicating that product excision occurs in the absence of radiation-induced breaks. On the average, 8 to 16 nucleotides are removed from the polymer per ring-damaged thymine residue excised by extracts from both strains and for γ-irradiated and osmium tetroxide-oxidized polymer.

Keywords: excision repair, DNA base damage, gamma rays

Full text

PDF
3532

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beer M., Stern S., Carmalt D., Mohlhenrich K. H. Determination of base sequence in nucleic acids with the electron microscope. V. The thymine-specific reactions of osmium tetroxide with deoxyribonucleic acid and its components. Biochemistry. 1966 Jul;5(7):2283–2288. doi: 10.1021/bi00871a017. [DOI] [PubMed] [Google Scholar]
  2. Brent T. P. A human endonuclease activity for gamma-irradiated DNA. Biophys J. 1973 Apr;13(4):399–401. doi: 10.1016/S0006-3495(73)85993-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burton K., Riley W. T. Selective degradation of thymidine and thymine deoxynucleotides. Biochem J. 1966 Jan;98(1):70–77. doi: 10.1042/bj0980070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cadet J., Teoule R. Peroxydes formés par action du rayonnement gamma sur la thymine en solution aqueuse aérée. Biochim Biophys Acta. 1971 Apr 29;238(1):8–26. [PubMed] [Google Scholar]
  5. Cerutti P. A. Effects of ionizing radiation on mammalian cells. Naturwissenschaften. 1974 Feb;61(2):51–59. doi: 10.1007/BF00596195. [DOI] [PubMed] [Google Scholar]
  6. Cleaver J. E. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc Natl Acad Sci U S A. 1969 Jun;63(2):428–435. doi: 10.1073/pnas.63.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedberg E. C., Goldthwait D. A. Endonuclease II of E. coli. I. Isolation and purification. Proc Natl Acad Sci U S A. 1969 Mar;62(3):934–940. doi: 10.1073/pnas.62.3.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hariharan P. P., Cerutti P. A. Repair of gamma-ray-induced thymine damage in Micrococcus radiodurans. Nat New Biol. 1971 Feb 24;229(8):247–249. doi: 10.1038/newbio229247a0. [DOI] [PubMed] [Google Scholar]
  9. Hariharan P. V., Cerutti P. A. Formation and repair of gamma-ray induced thymine damage in Micrococcus radiodurans. J Mol Biol. 1972 Apr 28;66(1):65–81. doi: 10.1016/s0022-2836(72)80006-8. [DOI] [PubMed] [Google Scholar]
  10. Kushner S. R., Kaplan J. C., Ono H., Grossman L. Enzymatic repair of deoxyribonucleic acid. IV. Mechanism of photoproduct excision. Biochemistry. 1971 Aug 31;10(18):3325–3334. doi: 10.1021/bi00794a002. [DOI] [PubMed] [Google Scholar]
  11. Mattern M. R., Hariharan P. V., Dunlap B. E., Cerutti P. A. DNA-degradation and excision repair in gamma-irradiated Chinese hamster ovary cells. Nat New Biol. 1973 Oct 24;245(147):230–232. doi: 10.1038/newbio245230a0. [DOI] [PubMed] [Google Scholar]
  12. Okuda A. Inhibition of the UV-ionizing radiation synergism in Escherichia coli B/r by liquid holding between the two irradiations. Photochem Photobiol. 1973 Oct;18(4):335–337. doi: 10.1111/j.1751-1097.1973.tb06429.x. [DOI] [PubMed] [Google Scholar]
  13. Paterson M. C., Setlow R. B. Endonucleolytic activity from Micrococcus luteus that acts on -ray-induced damage in plasmid DNA of Escherichia coli minicells. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2927–2931. doi: 10.1073/pnas.69.10.2927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roti J. L., Cerutti P. A. Letter: Gamma-ray induced thymine damage in mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1974 Apr;25(4):413–417. doi: 10.1080/09553007414550491. [DOI] [PubMed] [Google Scholar]
  15. Setlow R. B., Carrier W. L. Endonuclease activity toward DNA irradiated in vitro by gamma rays. Nat New Biol. 1973 Feb 7;241(110):170–172. doi: 10.1038/newbio241170a0. [DOI] [PubMed] [Google Scholar]
  16. Venitt S., Tarmy E. M. The selective excision of arylalkylated products from the DNA of Escherichia coli treated with the carcinogen 7-bromomethylbenz(a)anthracene. Biochim Biophys Acta. 1972 Nov 16;287(1):38–51. doi: 10.1016/0005-2787(72)90328-0. [DOI] [PubMed] [Google Scholar]
  17. Verly W. G., Paquette Y., Thibodeau L. Nuclease for DNA apurinic sites may be involved in the maintenance of DNA in normal cells. Nat New Biol. 1973 Jul 18;244(133):67–69. doi: 10.1038/newbio244067a0. [DOI] [PubMed] [Google Scholar]
  18. Wickner R. B., Wright M., Wickner S., Hurwitz J. Conversion of phiX174 and fd single-stranded DNA to replicative forms in extracts of Escherichia coli. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3233–3237. doi: 10.1073/pnas.69.11.3233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilkins R. J. Does Escherichia coli possess a DNA excision repair system for gamma-ray damage? Nat New Biol. 1973 Aug 29;244(139):269–271. doi: 10.1038/newbio244269a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES