Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Sep;71(9):3649–3653. doi: 10.1073/pnas.71.9.3649

An N-Glycosidase from Escherichia coli That Releases Free Uracil from DNA Containing Deaminated Cytosine Residues

Tomas Lindahl 1
PMCID: PMC433833  PMID: 4610583

Abstract

An enzyme that liberates uracil from single-stranded and double-stranded DNA containing deaminated cytosine residues and from deoxycytidylate-deoxyuridylate copolymers in the absence of Mg++ has been purified 30-fold from cell extracts of E. coli. The enzyme does not release uracil from deoxyuridine, dUMP, uridine, or RNA, nor does it liberate the normally occurring pyrimidine bases, cytosine and thymine, from DNA. The enzymatic cleavage of N-glycosidic bonds in DNA occurs without concomitant cleavage of phosphodiester bonds, resulting in the formation of free uracil and DNA strands of unaltered chain length that contain apyrimidinic sites as reaction products. The enzyme may be active in DNA repair, converting deaminated dCMP residues to an easily repairable form.

Keywords: deoxyuridine, DNA repair, heteroduplex DNA

Full text

PDF
3649

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERTANI L. E., HAEGGMARK A., REICHARD P. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. II. FORMATION AND INTERCONVERSION OF DEOXYURIDINE PHOSPHATES. J Biol Chem. 1963 Oct;238:3407–3413. [PubMed] [Google Scholar]
  2. Cortese R., Kammen H. O., Spengler S. J., Ames B. N. Biosynthesis of pseudouridine in transfer ribonucleic acid. J Biol Chem. 1974 Feb 25;249(4):1103–1108. [PubMed] [Google Scholar]
  3. GREER S., ZAMENHOF S. Studies on depurination of DNA by heat. J Mol Biol. 1962 Mar;4:123–141. doi: 10.1016/s0022-2836(62)80046-1. [DOI] [PubMed] [Google Scholar]
  4. Hadi S. M., Goldthwait D. A. Endonuclease II of Escherichia coli. Degradation of partially depurinated deoxyribonucleic acid. Biochemistry. 1971 Dec 21;10(26):4986–4993. doi: 10.1021/bi00802a024. [DOI] [PubMed] [Google Scholar]
  5. Johnson L., Söll D. In vitro biosynthesis of pseudouridine at the polynucleotide level by an enzyme extract from Escherichia coli. Proc Natl Acad Sci U S A. 1970 Oct;67(2):943–950. doi: 10.1073/pnas.67.2.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kirtikar D. M., Goldthwait D. A. The enzymatic release of O6-methylguanine and 3-methyladenine from DNA reacted with the carcinogen N-methyl-N-nitrosourea. Proc Natl Acad Sci U S A. 1974 May;71(5):2022–2026. doi: 10.1073/pnas.71.5.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LAMPEN J. O., WANG T. P. The mechanism of action of Lactobacillus pentosus nucleosidase. J Biol Chem. 1952 Sep;198(1):385–395. [PubMed] [Google Scholar]
  8. Lindahl T., Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3618–3623. doi: 10.1021/bi00769a019. [DOI] [PubMed] [Google Scholar]
  9. Lindahl T., Karlström O. Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution. Biochemistry. 1973 Dec 4;12(25):5151–5154. doi: 10.1021/bi00749a020. [DOI] [PubMed] [Google Scholar]
  10. Lindahl T., Nyberg B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry. 1974 Jul 30;13(16):3405–3410. doi: 10.1021/bi00713a035. [DOI] [PubMed] [Google Scholar]
  11. Lindahl T., Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3610–3618. doi: 10.1021/bi00769a018. [DOI] [PubMed] [Google Scholar]
  12. Ljungquist S., Lindahl T. A mammalian endonuclease specific for apurinic sites in double-stranded deoxyribonucleic acid. I. Purification and general properties. J Biol Chem. 1974 Mar 10;249(5):1530–1535. [PubMed] [Google Scholar]
  13. Reeves W. J., Jr, Seid A., Greenberg D. M. A new paper chromatography solvent system resolving pyrimidine-pyrimidine riboside-pyrimidine deoxyriboside mixtures. Anal Biochem. 1969 Sep;30(3):474–477. doi: 10.1016/0003-2697(69)90145-6. [DOI] [PubMed] [Google Scholar]
  14. Richardson C. C. The 5'-terminal nucleotides of T7 bacteriophage deoxyribonucleic acid. J Mol Biol. 1966 Jan;15(1):49–61. doi: 10.1016/s0022-2836(66)80208-5. [DOI] [PubMed] [Google Scholar]
  15. SCHACHMAN H. K., ADLER J., RADDING C. M., LEHMAN I. R., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. VII. Synthesis of a polymer of deoxyadenylate and deoxythymidylate. J Biol Chem. 1960 Nov;235:3242–3249. [PubMed] [Google Scholar]
  16. Shapiro R., Braverman B., Louis J. B., Servis R. E. Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite. J Biol Chem. 1973 Jun 10;248(11):4060–4064. [PubMed] [Google Scholar]
  17. Shapiro R., Kang S. Uncatalyzed hydrolysis of deoxyuridine, thymidine, and 5-bromodeoxyuridine. Biochemistry. 1969 May;8(5):1806–1810. doi: 10.1021/bi00833a004. [DOI] [PubMed] [Google Scholar]
  18. Shapiro R., Klein R. S. The deamination of cytidine and cytosine by acidic buffer solutions. Mutagenic implications. Biochemistry. 1966 Jul;5(7):2358–2362. doi: 10.1021/bi00871a026. [DOI] [PubMed] [Google Scholar]
  19. Siegel L. M., Monty K. J. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim Biophys Acta. 1966 Feb 7;112(2):346–362. doi: 10.1016/0926-6585(66)90333-5. [DOI] [PubMed] [Google Scholar]
  20. TAKAGI Y., HORECKER B. L. Purification and properties of a bacterial riboside hydrolase. J Biol Chem. 1957 Mar;225(1):77–86. [PubMed] [Google Scholar]
  21. Ullman J. S., McCarthy B. J. Alkali deamination of cytosine residues in DNA. Biochim Biophys Acta. 1973 Feb 4;294(1):396–404. doi: 10.1016/0005-2787(73)90094-4. [DOI] [PubMed] [Google Scholar]
  22. Verly W. G., Paquette Y., Thibodeau L. Nuclease for DNA apurinic sites may be involved in the maintenance of DNA in normal cells. Nat New Biol. 1973 Jul 18;244(133):67–69. doi: 10.1038/newbio244067a0. [DOI] [PubMed] [Google Scholar]
  23. Vogt V. M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem. 1973 Feb 15;33(1):192–200. doi: 10.1111/j.1432-1033.1973.tb02669.x. [DOI] [PubMed] [Google Scholar]
  24. Wovcha M. G., Warner H. R. Synthesis and nucleolytic degradation of uracil-containing deoxyribonucleic acid by Escherichia coli deoxyribonucleic acid polymerase. I. J Biol Chem. 1973 Mar 10;248(5):1746–1750. [PubMed] [Google Scholar]
  25. YONEDA M., BOLLUM F. J. DEOXYNUCLEOTIDE-POLYMERIZING ENZYMES OF CALF THYMUS GLAND. I. LARGE SCALE PURIFICATION OF TERMINAL AND REPLICATIVE DEOXYNUCLEOTIDYL TRANSFERASES. J Biol Chem. 1965 Aug;240:3385–3391. [PubMed] [Google Scholar]
  26. Zmudzka B., Bollum F. J., Shugar D. Polydeoxyribouridylic acid and its complexes with polyribo- and deoxyriboadenylic acids. J Mol Biol. 1969 Nov 28;46(1):169–183. doi: 10.1016/0022-2836(69)90064-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES