Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Sep;71(9):3692–3695. doi: 10.1073/pnas.71.9.3692

Molecular Basis for the Photosynthetic Primary Process

Francis K Fong 1
PMCID: PMC433842  PMID: 16592179

Abstract

In this paper, the molecular details for the primary reaction in photosynthesis are deduced from several recent critical experimental observations. A symmetrical structure is proposed for the basic unit of the reaction center in plant photosynthesis. A mathematical consequence of the symmetrical arrangement is the creation of an anomalously long-lived trap state, which makes possible the summation of a reaction-center triplet excitation and an antenna chlorophyll singlet excitation to bring the photoactive chlorophylls to a charge-transfer state prior to entering into a primary photochemical reaction.

Keywords: energy upconversion, excitonic interactions, photosynthesis

Full text

PDF
3692

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FRANCK J., ROSENBERG J. L. A THEORY OF LIGHT UTILIZATION IN PLANT PHOTOSYNTHESIS. J Theor Biol. 1964 Sep;7:276–301. doi: 10.1016/0022-5193(64)90073-6. [DOI] [PubMed] [Google Scholar]
  2. Fong F. K. Energy upconversion theory of the primary photochemical reaction in plant photosynthesis. J Theor Biol. 1974 Aug;46(2):407–420. doi: 10.1016/0022-5193(74)90006-x. [DOI] [PubMed] [Google Scholar]
  3. Hammond G. S., Turro N. J. Organic Photochemistry. Science. 1963 Dec 20;142(3599):1541–1553. doi: 10.1126/science.142.3599.1541. [DOI] [PubMed] [Google Scholar]
  4. McElroy J. D., Feher G., Mauzerall D. C. Characterization of primary reactants in bacterial photosynthesis. I. Comparison of the light-induced EPR signal (g=2.0026) with that of a bacteriochlorophyll radical. Biochim Biophys Acta. 1972 May 25;267(2):363–374. doi: 10.1016/0005-2728(72)90123-5. [DOI] [PubMed] [Google Scholar]
  5. Norris J. R., Druyan M. E., Katz J. J. Electron nuclear double resonance of bacteriochlorophyll free radical in vitro and in vivo. J Am Chem Soc. 1973 Mar 7;95(5):1680–1682. doi: 10.1021/ja00786a066. [DOI] [PubMed] [Google Scholar]
  6. Norris J. R., Uphaus R. A., Crespi H. L., Katz J. J. Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci U S A. 1971 Mar;68(3):625–628. doi: 10.1073/pnas.68.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Norris J. R., Uphaus R. A., Katz J. J. Electron spin resonance in 13 C-labelled chlorophyll and 13 C-labelled algae. Biochim Biophys Acta. 1972 Aug 17;275(2):161–168. doi: 10.1016/0005-2728(72)90036-9. [DOI] [PubMed] [Google Scholar]
  8. Wraight C. A., Leigh J. S., Dutton P. L., Clayton R. K. The triplet state of reaction center bacteriochlorophyll: determination of a relative quantum yeild. Biochim Biophys Acta. 1974 Mar 26;333(3):401–408. doi: 10.1016/0005-2728(74)90123-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES