Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Nov;71(11):4317–4321. doi: 10.1073/pnas.71.11.4317

lsomeric Phenylalanyl-tRNAs. Position of the Aminoacyl Moiety During Protein Biosynthesis

Sidney M Hecht 1,*, John W Kozarich 1, Francis J Schmidt 1
PMCID: PMC433873  PMID: 4612516

Abstract

The preparation of phenylalanyl-tRNA terminating in 3′-deoxyadenosine has been achieved by incubation of abbreviated tRNA (tRNA-CpCOH) with 3′-deoxyadenosine 5′-diphosphate and polynucleotide phosphorylase (EC 2.7.7.8), followed by aminoacylation. The isomeric phenylalanyl-tRNA terminating in 2′-deoxyadenosine was constructed by incubation of tRNA-CpCOH with 2′-deoxy-3′-O-phenylalanyladenosine 5′-diphosphate and polynucleotide phosphorylase. While tRNA is aminoacylated at the 2′-position, only the 3′-aminoacyl-tRNA is active as a peptide acceptor in the peptidyltransferase reaction. Both modified tRNAs were bound to the A-site as efficiently as unmodified tRNA, but neither was so efficient at P-site binding or as an acceptor in the peptidyltransferase reaction. Neither of the modified tRNAs acted as a donor in the peptidyltransferase reaction.

Keywords: CTP(ATP):tRNA nucleotidyltransferase, “chemical” tRNA aminoacylation, ribosomal binding assays, peptidyltransferase reaction, puromycin-like activity

Full text

PDF
4317

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bock H. E. Professor Dr. Hans Hermann Bennhold zum 80. Geburtstag am 11. Sept. 1973. Med Welt. 1973 Sep 7;24(36):1341–1342. [PubMed] [Google Scholar]
  2. Cashel M. Preparation of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) from Escherichia coli ribosomes. Anal Biochem. 1974 Jan;57(1):100–107. doi: 10.1016/0003-2697(74)90056-6. [DOI] [PubMed] [Google Scholar]
  3. Chinali G., Sprinzl M., Parmeggiani A., Cramer F. Participation in protein biosynthesis of transfer ribonucleic acids bearing altered 3'-terminal ribosyl residues. Biochemistry. 1974 Jul 16;13(15):3001–3010. doi: 10.1021/bi00712a001. [DOI] [PubMed] [Google Scholar]
  4. Fraser T. H., Rich A. Synthesis and aminoacylation of 3'-amino-3'-deoxy transfer RNA and its activity in ribosomal protein synthesis. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2671–2675. doi: 10.1073/pnas.70.9.2671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gottikh B. P., Krayevsky A. A., Tarussova N. B., Purygin P. P., Tsilevich T. L. The general synthetic route to amino acid esters of nucleotides and nucleoside-5'-triphosphates and some properties of these compounds. Tetrahedron. 1970 Sep;26(18):4419–4433. doi: 10.1016/s0040-4020(01)93090-x. [DOI] [PubMed] [Google Scholar]
  6. Hecht S. M., Hawrelak S. D., Kozarich J. W., Schmidt F. J., Bock R. M. Chemical modifications of transfer RNA species. Transfer RNA's terminating in 2'- and 3'-O-methyladenosine. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1341–1347. doi: 10.1016/0006-291x(73)90648-7. [DOI] [PubMed] [Google Scholar]
  7. Hussain Z., Ofengand J. Terminal oxidation-reduction of yeast phenylalanine tRNA prevents donor and acceptor function at the peptidyl transferase center. Biochem Biophys Res Commun. 1973 Feb 20;50(4):1143–1151. doi: 10.1016/0006-291x(73)91525-8. [DOI] [PubMed] [Google Scholar]
  8. Kaufmann G., Littauer U. Z. Phosphorolysis of aminoacyl-tRNA by polynucleotide phosphorylase from Escherichia coli. Eur J Biochem. 1970 Jan;12(1):85–92. doi: 10.1111/j.1432-1033.1970.tb00824.x. [DOI] [PubMed] [Google Scholar]
  9. Kozarich J. W., Chinault A. C., Hecht S. M. Ribonucleoside phosphates via phosphorimidazolidate intermediates. Synthesis of pseudoadenosine 5'-triphosphate. Biochemistry. 1973 Oct 23;12(22):4458–4463. doi: 10.1021/bi00746a024. [DOI] [PubMed] [Google Scholar]
  10. Mackey J. K., Gilham P. T. New approach to the synthesis of polyribonucleotides of defined sequence. Nature. 1971 Oct 22;233(5321):551–553. doi: 10.1038/233551a0. [DOI] [PubMed] [Google Scholar]
  11. Pearson R. L., Weiss J. F., Kelmers A. D. Improved separation of transfer RNA's on polychlorotrifuoroethylene-supported reversed-phase chromatography columns. Biochim Biophys Acta. 1971 Feb 11;228(3):770–774. doi: 10.1016/0005-2787(71)90748-9. [DOI] [PubMed] [Google Scholar]
  12. Schmidt F. J., Bock R. M., Hecht S. M. Chemical modifications of transfer rna species. Heavy atom derivatization of aminoacyl tRNA. Biochem Biophys Res Commun. 1972 Jul 25;48(2):451–456. doi: 10.1016/s0006-291x(72)80072-x. [DOI] [PubMed] [Google Scholar]
  13. Shelton K. R., Clark J. M., Jr A proton exchange between purines and water and its application to biochemistry. Biochemistry. 1967 Sep;6(9):2735–2739. doi: 10.1021/bi00861a013. [DOI] [PubMed] [Google Scholar]
  14. Sprinzl M., Cramer F. Accepting site for aminoacylation of tRNAphe from yeast. Nat New Biol. 1973 Sep 5;245(140):3–5. doi: 10.1038/newbio245003a0. [DOI] [PubMed] [Google Scholar]
  15. Sprinzl M., Scheit K. H., Sternbach H., von der Haar F., Cramer F. In vitro in corporation of 2'-deoxyadenosine and 3'-deoxyadenosine into yeast tRNA Phe using t-RNA nucleotidyl transferase, and properties of tRNA Phe -C-C-2'dA and tRNA Phe -C-C-3'dA. Biochem Biophys Res Commun. 1973 Apr 16;51(4):881–887. doi: 10.1016/0006-291x(73)90009-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES