Abstract
Starting from the electromechanochemical principles of bioenergetics formulated by Green and Ji, a theory is proposed which describes enzymic catalysis in terms of piezoelectricity in semiconductors. The choice of this particular physical effect for describing catalytic processes is founded on the following experimental observations: most of the amino-acid residues of enzymes, as well as a large number of other biologically important molecules, exhibit piezoelectric resonances; besides, enzymes can behave like semiconductors. In the proposed theory the catalysis is assumed to be accomplished by means of three fundamental processes: (a) the lowering of the substrate-product energy barrier; (b) the electron-induced selective amplification of the low-frequency vibrational waves present in thermal background in the enzyme structure; and (c) the channeling into the substrate of the energy associated with the amplified waves and utilization of this energy for generating electrical or mechanical fields inside a susceptible region of the substrate. A mathematical description of the theory is outlined, and a rough estimate of some quantities involved in the process of wave amplification is also reported.
Keywords: energy transduction, molecular machines, protein pulsation, biological semiconductivity
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bassett C. A. Biologic significance of piezoelectricity. Calcif Tissue Res. 1968 Mar;1(4):252–272. doi: 10.1007/BF02008098. [DOI] [PubMed] [Google Scholar]
- Brown K. G., Erfurth S. C., Small E. W., Peticolas W. L. Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1467–1469. doi: 10.1073/pnas.69.6.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caserta G., Cervigni T. A piezoelectric transducer model for phosphorylation in photosynthetic membranes. J Theor Biol. 1973 Sep 14;41(1):127–142. doi: 10.1016/0022-5193(73)90193-8. [DOI] [PubMed] [Google Scholar]
- Cope F. W. Supramolecular biology: a solid state physical approach to ion and electron transport. Ann N Y Acad Sci. 1973 Mar 30;204:416–433. doi: 10.1111/j.1749-6632.1973.tb30795.x. [DOI] [PubMed] [Google Scholar]
- Damjanovich S., Somogyi B. Letter: A molecular enzyme model based on oriented energy transfer. J Theor Biol. 1973 Oct;41(3):567–569. doi: 10.1016/0022-5193(73)90063-5. [DOI] [PubMed] [Google Scholar]
- Eley D. D., Mayer R. J., Pethig R. Microwave Hall mobility measurements on heavy beef heart mitochondria. J Bioenerg. 1973 Jan;4(1):187–200. doi: 10.1007/BF01516056. [DOI] [PubMed] [Google Scholar]
- Green D. E., Ji S. Electromechanochemical model of mitochondrial structure and function. Proc Natl Acad Sci U S A. 1972 Mar;69(3):726–729. doi: 10.1073/pnas.69.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green D. E., Ji S. Transductional and structural principles of the mitochondrial transducing unit. Proc Natl Acad Sci U S A. 1973 Mar;70(3):904–908. doi: 10.1073/pnas.70.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green D. E. The electromechanochemical model for energy coupling in mitochondria. Biochim Biophys Acta. 1974 Apr 30;346(1):27–78. doi: 10.1016/0304-4173(74)90011-1. [DOI] [PubMed] [Google Scholar]
- Koshland D. E., Jr, Neet K. E. The catalytic and regulatory properties of enzymes. Annu Rev Biochem. 1968;37:359–410. doi: 10.1146/annurev.bi.37.070168.002043. [DOI] [PubMed] [Google Scholar]
- Shohet J. L., Reible S. A. Models for energy transduction and transfer in biological systems. Ann N Y Acad Sci. 1974 Feb 18;227:641–650. doi: 10.1111/j.1749-6632.1974.tb14429.x. [DOI] [PubMed] [Google Scholar]
- Vasilescu D., Cornillon R., Mallet G. Piezoelectric resonances in amino-acids. Nature. 1970 Feb 14;225(5233):635–635. doi: 10.1038/225635a0. [DOI] [PubMed] [Google Scholar]