Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Nov;71(11):4482–4486. doi: 10.1073/pnas.71.11.4482

Phosphoprotein Phosphatase Activity Associated with Estrogen-Induced Protein in Rat Uterus

Alain Vokaer 1, Stefano Iacobelli 1, Raphaël Kram 1
PMCID: PMC433910  PMID: 4155069

Abstract

Estrogen-induced protein was purified from rat uteri and assayed for several enzymatic activities involved in the metabolism and action of cyclic nucleotides. No adenylate and guanylate cyclase (EC 4.6.1.1 and 4.6.1.2, respectively), protein kinase (EC 2.7.1.33), and cyclic nucleotide binding activities could be demonstrated in three independent preparations of the protein. However, all three preparations exhibited significant phosphoprotein phosphatase activity (EC 3.1.3.16) on phosphorylated protamine and histones F1. This activity is optimal at neutral pH, inhibited by Zn++, and unaffected by cyclic AMP or cyclic GMP.

Keywords: cyclic AMP, cyclic GMP, hormone, steroids

Full text

PDF
4482

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnaud M., Beziat Y., Borgna J. L., Guilleux J. C., Mousseron-Canet M. Le récepteur de l'oestradiol, l'AMP cyclique et la RNA polymérase nucléolaire dans l'uterus de génisse. Stimulation de la biosynthèse de RNA in vitro. Biochim Biophys Acta. 1971 Dec 16;254(2):241–254. [PubMed] [Google Scholar]
  2. Cutting J. A., Roth T. F. Staining of phospho-proteins on acrylamide gel electropherograms. Anal Biochem. 1973 Aug;54(2):386–394. doi: 10.1016/0003-2697(73)90367-9. [DOI] [PubMed] [Google Scholar]
  3. DeAngelo A. B., Fujimoto G. I. Translational control of specific uterine protein synthesis after estrogen induction. Proc Natl Acad Sci U S A. 1973 Jan;70(1):18–21. doi: 10.1073/pnas.70.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Delorenzo R. J., Greengard P. Activation by adenosine 3':5'-monophosphate of a membrane-bound phosphoprotein phosphatase from toad bladder. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1831–1835. doi: 10.1073/pnas.70.6.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hadden J. W., Hadden E. M., Haddox M. K., Goldberg N. D. Guanosine 3':5'-cyclic monophosphate: a possible intracellular mediator of mitogenic influences in lymphocytes. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3024–3027. doi: 10.1073/pnas.69.10.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hechter O., Yoshinaga K., Halkerston I. D., Birchall K. Estrogen-like anabolic effects of cyclic 3',5'-adenosine monophosphate and other nucleotides in isolated rat uterus. Arch Biochem Biophys. 1967 Nov;122(2):449–465. doi: 10.1016/0003-9861(67)90219-6. [DOI] [PubMed] [Google Scholar]
  8. Iacobelli S. Induced protein synthesis and oestradiol binding to the nuclei in the rat uterus. Nat New Biol. 1973 Oct 3;245(144):154–155. doi: 10.1038/newbio245154a0. [DOI] [PubMed] [Google Scholar]
  9. Jacobelli S., Paparatti L., Bompiani A. Oestrogen-induced protein (IP) of rat uterus. Isolation and preliminary characterization. FEBS Lett. 1973 May 15;32(1):199–203. doi: 10.1016/0014-5793(73)80771-9. [DOI] [PubMed] [Google Scholar]
  10. Kato K., Bishop J. S. Glycogen synthetase-D phosphatase. I. Some new properties of the partially purified enzyme from rabbit skeletal muscle. J Biol Chem. 1972 Nov 25;247(22):7420–7429. [PubMed] [Google Scholar]
  11. Katzenellenbogen B. S., Gorski J. Estrogen action in vitro. Induction of the synthesis of a specific uterine protein. J Biol Chem. 1972 Feb 25;247(4):1299–1305. [PubMed] [Google Scholar]
  12. Kram R., Mamont P., Tomkins G. M. Pleiotypic control by adenosine 3':5'-cyclic monophosphate: a model for growth control in animal cells. Proc Natl Acad Sci U S A. 1973 May;70(5):1432–1436. doi: 10.1073/pnas.70.5.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kram R., Tomkins G. M. Pleiotypic control by cyclic AMP: interaction with cyclic GMP and possible role of microtubules. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1659–1663. doi: 10.1073/pnas.70.6.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krebs E. G. Protein kinases. Curr Top Cell Regul. 1972;5:99–133. [PubMed] [Google Scholar]
  15. Kuehl F. A., Jr, Ham E. A., Zanetti M. E., Sanford C. H., Nicol S. E., Goldberg N. D. Estrogen-related increases in uterine guanosine 3':5'-cyclic momophosphate levels. Proc Natl Acad Sci U S A. 1974 May;71(5):1866–1870. doi: 10.1073/pnas.71.5.1866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Langan T. A. Cyclic AMP and histone phosphorylation. Ann N Y Acad Sci. 1971 Dec 30;185:166–180. doi: 10.1111/j.1749-6632.1971.tb45246.x. [DOI] [PubMed] [Google Scholar]
  17. MOORE B. W., MCGREGOR D. CHROMATOGRAPHIC AND ELECTROPHORETIC FRACTIONATION OF SOLUBLE PROTEINS OF BRAIN AND LIVER. J Biol Chem. 1965 Apr;240:1647–1653. [PubMed] [Google Scholar]
  18. Maeno H., Greengard P. Phosphoprotein phosphatases from rat cerebral cortex. Subcellular distribution and characterization. J Biol Chem. 1972 May 25;247(10):3269–3277. [PubMed] [Google Scholar]
  19. Marks D. B., Paik W. K., Borun T. W. The relationship of histone phosphorylation to deoxyribonucleci acid replication and mitosis during the HeLa S-3 cell cycle. J Biol Chem. 1973 Aug 25;248(16):5660–5667. [PubMed] [Google Scholar]
  20. Meisler M. H., Langan T. A. Characterization of a phosphatase specific for phosphorylated histones and protamine. J Biol Chem. 1969 Sep 25;244(18):4961–4968. [PubMed] [Google Scholar]
  21. Notides A., Gorski J. Estrogen-induced synthesis of a specific uterine protein. Proc Natl Acad Sci U S A. 1966 Jul;56(1):230–235. doi: 10.1073/pnas.56.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Otten J., Johnson G. S., Pastan I. Regulation of cell growth by cyclic adenosine 3',5'-monophosphate. Effect of cell density and agents which alter cell growth on cyclic adenosine 3',5'-monophosphate levels in fibroblasts. J Biol Chem. 1972 Nov 10;247(21):7082–7087. [PubMed] [Google Scholar]
  23. Rosenfeld M. G., O'Malley B. W. Steroid hormones: effects on adenyl cyclase activity and adenosine 3',5'-momophosphate in target tissues. Science. 1970 Apr 10;168(3928):253–255. doi: 10.1126/science.168.3928.253. [DOI] [PubMed] [Google Scholar]
  24. Sanborn B. M., Bhalla R. C., Korenman S. G. The endometrial adenosine cyclic 3':5'-monophosphate-dependent protein kinase. Distribution, subunit structure, and kinetics of adenosine cyclic 3':5'-monophosphate binding. J Biol Chem. 1973 May 25;248(10):3593–3600. [PubMed] [Google Scholar]
  25. Sanborn B. M., Bhalla R. C., Korenman S. G. Use of a modified radioligand assay to measure the effect of estradiol on uterine adenosine 3',5'-cyclic monophosphate. Endocrinology. 1973 Feb;92(2):494–499. doi: 10.1210/endo-92-2-494. [DOI] [PubMed] [Google Scholar]
  26. Sharma S. K., Jain S. K., Talwar G. P. Action of cyclic 3':5'-AMP on phosphorylation of uridine in ovariectomised rat uterus. Biochim Biophys Acta. 1972 May 29;269(3):533–535. doi: 10.1016/0005-2787(72)90146-3. [DOI] [PubMed] [Google Scholar]
  27. Sharma S. K., Talwar G. P. Action of cyclic adenosine 3',5'-monophosphate in vitro on the uptake and incorporation of uridine into ribonucleic acid in ovariectomized rat uterus. J Biol Chem. 1970 Apr 10;245(7):1513–1519. [PubMed] [Google Scholar]
  28. Szego C. M., Davis J. S. Adenosine 3',5'-monophosphate in rat uterus: acute elevation by estrogen. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1711–1718. doi: 10.1073/pnas.58.4.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sömjen D., Sömjen G., King R. J., Kaye A. M., Lindner H. R. Nuclear binding of oestradiol-17beta and induction of protein synthesis in the rat uterus during postnatal development. Biochem J. 1973 Sep;136(1):25–33. doi: 10.1042/bj1360025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tomkins G. M., Martin D. W., Jr Hormones and gene expression. Annu Rev Genet. 1970;4:91–106. doi: 10.1146/annurev.ge.04.120170.000515. [DOI] [PubMed] [Google Scholar]
  31. White A. A., Zenser T. V. Separation of cyclic 3',5'-nucleoside monophosphates from other nucleotides on aluminum oxide columns. Application to the assay of adenyl cyclase and guanyl cyclase. Anal Biochem. 1971 Jun;41(2):372–396. doi: 10.1016/0003-2697(71)90156-4. [DOI] [PubMed] [Google Scholar]
  32. Wiblet M., Baltus E. Protéine kinase de l'ovaire, des oocytes ovariens et des oocytes ayant subi la maturation et l'ovulation in vitro, chez Xenopus laevis. Arch Int Physiol Biochim. 1973 Oct;81(4):813–813. [PubMed] [Google Scholar]
  33. Zieve F. J., Glinsmann W. H. Activation of glycogen synthetase and inactivation of phosphorylase kinase by the same phosphoprotein phosphatase. Biochem Biophys Res Commun. 1973 Feb 5;50(3):872–878. doi: 10.1016/0006-291x(73)91326-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES