Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Nov;71(11):4589–4593. doi: 10.1073/pnas.71.11.4589

Direct Evidence for Fluid Membranes

Sidney L Tamm 1, Signhild Tamm 1
PMCID: PMC433933  PMID: 4531002

Abstract

We describe a new kind of cell motility that provides direct, visual evidence for the fluid nature of cell membranes. The movement involves continual, unidirectional rotation of one part of a devescovinid flagellate in relation to a neighboring part, at speeds up to one rotation/1.5 sec (room temperature). Rotation includes the plasma membrane, using the flagellar bases and ectosymbiotic bacteria embedded in pockets of the membrane as visible markers. The plasma membrane between the rotating and stationary surfaces is continuous, without fusions with other membranes, and has the typical trilaminar structure of other cell membranes. The nucleus, helical Golgi complex, and stiff central axostyle also rotate. The head of the flagellate always rotates clockwise (as viewed from the anterior end) in relation to the body, but when the head becomes stuck to debris, the body rotates counterclockwise. Evidence suggests that the microtubular axostyle generates the motive force for rotation.

Keywords: membrane and organelle rotation, axostyle, termite flagellate

Full text

PDF
4589

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg H. C. Dynamic properties of bacterial flagellar motors. Nature. 1974 May 3;249(452):77–79. doi: 10.1038/249077a0. [DOI] [PubMed] [Google Scholar]
  2. Doetsch R. N., Hageage G. J. Motility in procaryotic organisms: problems, points of view, and perspectives. Biol Rev Camb Philos Soc. 1968 Aug;43(3):317–362. doi: 10.1111/j.1469-185x.1968.tb00963.x. [DOI] [PubMed] [Google Scholar]
  3. Kubai D. F. Unorthodox mitosis in Trichonympha agilis: kinetochore differentiation and chromosome movement. J Cell Sci. 1973 Sep;13(2):511–552. doi: 10.1242/jcs.13.2.511. [DOI] [PubMed] [Google Scholar]
  4. Kwiatkowska M. Changes in the diameter of microtubules connected with the autonomous rotary motion of the lipotubuloids (elaioplasts). Protoplasma. 1972;75(4):345–357. doi: 10.1007/BF01282114. [DOI] [PubMed] [Google Scholar]
  5. Linden C. D., Wright K. L., McConnell H. M., Fox C. F. Lateral phase separations in membrane lipids and the mechanism of sugar transport in Escherichia coli. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2271–2275. doi: 10.1073/pnas.70.8.2271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mussill M., Jarosch R. Bacterial flagella rotate and do not contract. Protoplasma. 1972;75(4):465–469. doi: 10.1007/BF01282123. [DOI] [PubMed] [Google Scholar]
  7. Oldfield E., Chapman D. Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol. FEBS Lett. 1972 Jul 1;23(3):285–297. doi: 10.1016/0014-5793(72)80300-4. [DOI] [PubMed] [Google Scholar]
  8. Silverman M., Simon M. Flagellar rotation and the mechanism of bacterial motility. Nature. 1974 May 3;249(452):73–74. doi: 10.1038/249073a0. [DOI] [PubMed] [Google Scholar]
  9. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  10. Stent G. S. Prematurity and uniqueness in scientific discovery. Sci Am. 1972 Dec;227(6):84–93. doi: 10.1038/scientificamerican1272-84. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES