Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Nov;71(11):4612–4616. doi: 10.1073/pnas.71.11.4612

Mitochondrial Genetics in Bakers' Yeast: A Molecular Mechanism for Recombinational Polarity and Suppressiveness

Philip S Perlman 1, C William Birky Jr 1
PMCID: PMC433938  PMID: 4612525

Abstract

Recombinational polarity and suppressiveness are two well-known but puzzling cytoplasmic genetic phenomena in bakers' yeast, Saccharomyces cerevisiae. Little progress has been made in characterizing the underlying molecular mechanisms of these phenomena. In this paper we describe a molecular model for recombinational polarity that is compatible with the available genetic evidence. The model stresses the role of small deletions and excision/repair processes in otherwise canonical recombinational events. According to the model, both phenomena require recombination and may share mechanistic elements.

Keywords: mitochondrial DNA, Saccharomyces cerevisiae

Full text

PDF
4612

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avner P. R., Coen D., Dujon B., Slonimski P. P. Mitochondrial genetics. IV. Allelism and mapping studies of oligomycin resistant mutants in S. cerevisiae. Mol Gen Genet. 1973 Sep 5;125(1):9–52. doi: 10.1007/BF00292982. [DOI] [PubMed] [Google Scholar]
  2. Benz W. C., Berger H. Selective allele loss in mixed infections with T4 bacteriophage. Genetics. 1973 Jan;73(1):1–11. doi: 10.1093/genetics/73.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berger H., Warren A. J. Effects of deletion mutations on high negative interference in T4D bacteriophage. Genetics. 1969 Sep;63(1):1–5. doi: 10.1093/genetics/63.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coen D., Deutsch J., Netter P., Petrochilo E., Slonimski P. P. Mitochondrial genetics. I. Methodology and phenomenology. Symp Soc Exp Biol. 1970;24:449–496. [PubMed] [Google Scholar]
  5. Deutsch J., Dujon B., Netter P., Petrochilo E., Slonimski P. P., Bolotin-Fukuhara M., Coen D. Mitochondrial genetics. VI. The petite mutation in Saccharomyces cerevisiae: interrelations between the loss of the p+ factor and the loss of the drug resistance mitochondrial genetic markers. Genetics. 1974 Feb;76(2):195–219. doi: 10.1093/genetics/76.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EPHRUSS B., GRANDCHAMP S. ETUDES SUR LA SUPPRESSIVIT'E DES MUTANTS 'A DEFICIENCE RESPIRATOIRE DE LA LEVURE. I. EXISTENCE AU NIVEAU CELLULAIRE DE DIVERS "DEGR'ES DE SUPPRESSIVIT'E". Heredity (Edinb) 1965 Feb;20:1–7. doi: 10.1038/hdy.1965.1. [DOI] [PubMed] [Google Scholar]
  7. Ephrussi B., Jakob H., Grandchamp S. Etudes Sur La SuppressivitE Des Mutants a Deficience Respiratoire De La Levure. II. Etapes De La Mutation Grande En Petite Provoquee Par Le Facteur Suppressif. Genetics. 1966 Jul;54(1):1–29. doi: 10.1093/genetics/54.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ephrussi B., de Margerie-Hottinguer H., Roman H. SUPPRESSIVENESS: A NEW FACTOR IN THE GENETIC DETERMINISM OF THE SYNTHESIS OF RESPIRATORY ENZYMES IN YEAST. Proc Natl Acad Sci U S A. 1955 Dec 15;41(12):1065–1071. doi: 10.1073/pnas.41.12.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Faye G., Fukuhara H., Grandchamp C., Lazowska J., Michel F., Casey J., Getz G. S., Locker J., Rabinowitz M., Bolotin-Fukuhara M. Mitochondrial nucleic acids in the petite colonie mutants: deletions and repetition of genes. Biochimie. 1973;55(6):779–792. doi: 10.1016/s0300-9084(73)80030-6. [DOI] [PubMed] [Google Scholar]
  10. Fink G. R., Styles C. A. Gene conversion of deletions in the his4 region of yeast. Genetics. 1974 Jun;77(2):231–244. doi: 10.1093/genetics/77.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fukuhara H., Faye G., Michel F., Lazowska J., Deutsch J., Bolotin-Fukuhara M., slonimski P. P. Physical and genetic organization of petite and grande yeast mitochondrial DNA.I. Studies by RNA-DNA hybridization. Mol Gen Genet. 1974 May 31;130(3):215–238. doi: 10.1007/BF00268801. [DOI] [PubMed] [Google Scholar]
  12. Gordon P., Rabinowitz M. Evidence for deletion and changed sequence in the mitochondrial deoxyribonucleic acid of a spontaneously generated petite mutant of Saccharomyces cerevisiae. Biochemistry. 1973 Jan 2;12(1):116–123. doi: 10.1021/bi00725a019. [DOI] [PubMed] [Google Scholar]
  13. LINN S., LEHMAN I. R. AN ENDONUCLEASE FROM NEUROSPORA CRASSA SPECIFIC FOR POLYNUCLEOTIDES LACKING AN ORDERED STRUCTURE. II. STUDIES OF ENZYME SPECIFICITY. J Biol Chem. 1965 Mar;240:1294–1304. [PubMed] [Google Scholar]
  14. Leblon G. Mechanism of gene conversion in Ascobolus immersus. II. The relationships between the genetic alterations in b 1 or b 2 mutants and their conversion spectrum. Mol Gen Genet. 1972;116(4):322–335. doi: 10.1007/BF00270089. [DOI] [PubMed] [Google Scholar]
  15. Linnane A. W., Saunders G. W., Gingold E. B., Lukins H. B. The biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1968 Mar;59(3):903–910. doi: 10.1073/pnas.59.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Locker J., Rabinowitz M., Getz G. S. Tandem inverted repeats in mitochondrial DNA of petite mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1366–1370. doi: 10.1073/pnas.71.4.1366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mahler H. R., Perlman P. S. Induction of respiration deficient mutants in Saccharomyces cerevisiae by berenil. I. Berenil, a novel, non-intercalating mutagen. Mol Gen Genet. 1973 Mar 19;121(4):285–294. doi: 10.1007/BF00433228. [DOI] [PubMed] [Google Scholar]
  18. Meselson M., Yuan R., Heywood J. Restriction and modification of DNA. Annu Rev Biochem. 1972;41:447–466. doi: 10.1146/annurev.bi.41.070172.002311. [DOI] [PubMed] [Google Scholar]
  19. Michaelis G., Douglass S., Tsai M. J., Criddle R. S. Mitochondrial DNA and suppressiveness of petite mutants in Saccharomyces cerevisiae. Biochem Genet. 1971 Oct;5(5):487–495. doi: 10.1007/BF00487138. [DOI] [PubMed] [Google Scholar]
  20. NOMURA M., BENZER S. The nature of the "deletion" mutants in the rII region of phage T4. J Mol Biol. 1961 Oct;3:684–692. doi: 10.1016/s0022-2836(61)80031-4. [DOI] [PubMed] [Google Scholar]
  21. Nagley P., Linnane A. W. Mitochondrial DNA deficient petite mutants of yeast. Biochem Biophys Res Commun. 1970 Jun 5;39(5):989–996. doi: 10.1016/0006-291x(70)90422-5. [DOI] [PubMed] [Google Scholar]
  22. Rank G. H. Genetic evidence for 'Darwinian' selection at the molecular level. II. Genetic analysis of cytoplasmically-inherited high and low suppressitivity in Saccharomyces cervisiae. Can J Genet Cytol. 1970 Jun;12(2):340–346. doi: 10.1139/g70-050. [DOI] [PubMed] [Google Scholar]
  23. Sanders J. P., Flavell R. A., Borst P., Mol J. N. Nature of the base sequence conserved in the mitochondrial DNA of a low-density petite. Biochim Biophys Acta. 1973 Jul 13;312(3):441–457. doi: 10.1016/0005-2787(73)90443-7. [DOI] [PubMed] [Google Scholar]
  24. Sena E. P., Radin D. N., Fogel S. Synchronous mating in yeast. Proc Natl Acad Sci U S A. 1973 May;70(5):1373–1377. doi: 10.1073/pnas.70.5.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thomas D. Y., Wilkie D. Inhibition of mitochondrial synthesis in yeast by erythromycin: cytoplasmic and nuclear factors controlling resistance. Genet Res. 1968 Feb;11(1):33–41. doi: 10.1017/s0016672300011174. [DOI] [PubMed] [Google Scholar]
  26. Thomas D. Y., Wilkie D. Recombination of mitochondrial drug-resistance factors in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1968 Feb 26;30(4):368–372. doi: 10.1016/0006-291x(68)90753-5. [DOI] [PubMed] [Google Scholar]
  27. Wickerham L. J. A Critical Evaluation of the Nitrogen Assimilation Tests Commonly Used in the Classification of Yeasts. J Bacteriol. 1946 Sep;52(3):293–301. [PMC free article] [PubMed] [Google Scholar]
  28. Wolf K., Dujon B., Slonimski P. P. Mitochondrial genetics. V. Multifactorial mitochondrial crosses involving a mutation conferring paromomycin-resistance in Saccharomyces cerevisiae. Mol Gen Genet. 1973 Sep 5;125(1):53–90. doi: 10.1007/BF00292983. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES